nLab foliation of a Lie groupoid

Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Higher Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Contents

Idea

A generalization of the notion of foliation of a smooth manifold from manifolds to Lie groupoids.

Definition

One of several equivalent definitions of a (regular) foliation of a smooth manifold is

Definition

A regular foliation of a smooth manifold XX is a wide sub-Lie algebroid of its tangent Lie algebroid, hence a Lie algebroid 𝒫\mathcal{P} over XX with injective anchor map

𝒫 TX X = X. \array{ \mathcal{P} &\hookrightarrow & T X \\ \downarrow && \downarrow \\ X &=& X } \,.

In this spirit there is an evident generalization of the notion to a notion of foliations of Lie algebroids.

Definition

A (regular) foliation of a Lie groupoid 𝒢 \mathcal{G}_\bullet is a sub-Lie algebroid-groupoid of the tangent Lie algebroid-groupoid which is wide

𝒫 T𝒢 1 𝒫 0 T𝒢 0. \array{ \mathcal{P} &\hookrightarrow& T \mathcal{G}_1 \\ \downarrow \downarrow && \downarrow \downarrow \\ \mathcal{P}_0 &\hookrightarrow& T \mathcal{G}_0 } \,.

Examples

(…)

References

Maybe the first discussion of foliations of Lie groupoids appears in

Related discussion is in

Last revised on March 9, 2021 at 09:15:14. See the history of this page for a list of all contributions to it.