nLab
generalized G2-manifold

Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Manifolds and cobordisms

Contents

Definition

reduction of the structure group of the generalized tangent bundle of a 7-dimensional manifold along the inclusion

G 2×G 2SO(7,7) G_2 \times G_2 \to SO(7,7)

of two copies of G2.

References

  • Frederik Witt, Generalised G 2G_2-structures, (math.dg/0411642)

  • Claus Jeschek, Frederik Witt, Generalised G 2G_2-structures and type IIB superstrings (arXiv:hep-th/0412280)

  • Generalised G 2G_2-manifolds (2005) (pdf)

  • Anna Fino, Adriano Tomoassini, Generalized G 2G_2-manifolds and SU(3)SU(3)-structure, Int. J. Math. 19, 1147 (2008) (web)

  • J. de Boer, P de Medeiros, S El-Showk and A Sinkovics, G 2G_2 Hitchin functionals at one loop, Class. Quantum Grav. 25 (web)

Last revised on December 15, 2012 at 08:06:05. See the history of this page for a list of all contributions to it.