nLab rotation gate

Redirected from "rotation gates".

Context

Quantum systems

quantum logic


quantum physics


quantum probability theoryobservables and states


quantum information


quantum technology


quantum computing

Contents

Idea

In quantum information theory and quantum computing, by a rotation gate one means a quantum gate acting on a single qbit — regarded as a spinor acted on by SU(2) \simeq Spin(3) — by rotation of any given angle around one of the coordinate 3 axes.

Concretely, the standard notational convention for these gates in the canonical qbit measurement basis is the following (where XX, YY, ZZ denote the Pauli gates and θ[0,4π)\theta \in [0,4\pi) is the rotation angle):

R x(θ) exp(iθX/2) = cos(θ/2)idisin(θ/2)X = [cos(θ/2) isin(θ/2) isin(θ/2) cos(θ/2)] R y(θ) exp(iθY/2) = cos(θ/2)idisin(θ/2)Y = [cos(θ/2) sin(θ/2) sin(θ/2) cos(θ/2)] R z(θ) exp(iθZ/2) = cos(θ/2)idisin(θ/2)Z = [e iθ/2 0 0 e iθ/2]. \begin{array}{ccccccc} R_x(\theta) &\coloneqq& \exp\big( - \mathrm{i} \theta X/2 \big) &=& cos(\theta/2) \, id - \mathrm{i} \, sin(\theta/2) \, X &=& \left[ \begin{array}{cc} cos(\theta/2) & - \mathrm{i} \, sin(\theta/2) \\ - \mathrm{i} \, sin(\theta/2) & cos(\theta/2) \end{array} \right] \\ R_y(\theta) &\coloneqq& \exp\big( - \mathrm{i} \theta Y/2 \big) &=& cos(\theta/2) \, id - \mathrm{i} \, sin(\theta/2) \, Y &=& \left[ \begin{array}{cc} cos(\theta/2) & - sin(\theta/2) \\ - sin(\theta/2) & cos(\theta/2) \end{array} \right] \\ \\ R_z(\theta) &\coloneqq& \exp\big( - \mathrm{i} \theta Z/2 \big) &=& cos(\theta/2) \, id - \mathrm{i} \, sin(\theta/2) \, Z &=& \left[ \begin{array}{cc} e^{-\mathrm{i} \theta/2} & 0 \\ 0 & e^{\mathrm{i}\theta/2} \end{array} \right] \mathrlap{\,.} \end{array}

Remark

To appreciate the 4π4\pi-domain of the angle variable θ\theta, recall that the action of these linear operators R R_\bullet on 2\mathbb{C}^2 is rotation of spinors, double-covering rotation of vectors (x,y,z) 3(x,y,z) \in \mathbb{R}^3 which instead is given by the conjugation action:

xX+yY+zZR (θ)(xX+yY+zZ)R (θ). x X + y Y + z Z \;\;\mapsto\;\; R_\bullet(\theta) (x X + y Y + z Z) R_\bullet(-\theta) \,.

In particular, in each case R (2π)=1Z(Spin(3))R_\bullet(2\pi) = -1 \in Z\big(Spin(3)\big) becomes the identity operation (only) under the spin double cover map Spin ( 3 ) Spin(3) \to SO ( 3 ) SO(3) .

Applications

Quantum Fourier transform

Controlled rotation gates play a key role in the quantum Fourier transform (and thus in many quantum algorithms, notably in Shor's algorithm).

Concretely, quantum circuits implementing the quantum Fourier transform employ many copies [Nielsen & Chuang 2000 (5.11) & Fig. 5.1, pp 218] of the gates

R k[1 0 0 e 2πi/2 k]=e πi/2 k[e πi/2 k 0 0 e πi/2 k]=e πi/2 kR z(2πi/2 k) R_k \;\coloneqq\; \left[ \begin{array}{c} 1 & 0 \\ 0 & e^{2 \pi \mathrm{i}/2^k} \end{array} \right] \;=\; e^{\pi \mathrm{i}/2^k} \; \left[ \begin{array}{c} e^{-\pi \mathrm{i}/2^k} & 0 \\ 0 & e^{\pi \mathrm{i}/2^k} \end{array} \right] \;=\; e^{\pi \mathrm{i}/2^k} \, R_z(2\pi \mathrm{i}/2^k)

for kk \in \mathbb{N}.

(from Nielsen Chuang 2000)

References

Textbook account:

In Shor's algorithm:

Last revised on February 15, 2025 at 16:52:58. See the history of this page for a list of all contributions to it.