nLab monoidal groupoid

Redirected from "monoidal groupoids".
Contents

Context

Algebra

Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology

Introductions

Definitions

Paths and cylinders

Homotopy groups

Basic facts

Theorems

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Monoid theory

Categorification

Category theory

Contents

Idea

A monoidal category whose underlying category is a groupoid (hence all whose morphisms are invertible).

Equivalently: an A 4 A_4 -spatial groupoid whose unitors satisfy the triangle identities;

Equivalently: a 1-truncated A A_\infty -space/ E 1 E_1 -space.

Definitions

A monoidal groupoid is an A 4 A_4 -spatial groupoid GG such that the triangle identity is satisfied for all objects A:GA:G and B:GB:G:

τ A,B:(id Aλ B)α A,I,B=(ρ Aid B)\tau_{A,B}:(id_A \otimes \lambda_B) \circ \alpha_{A,I,B} = (\rho_A \otimes id_B)

Properties

The oidification of a monoidal groupoid is a (2,1)-category.

See also

algebraic structureoidification
magmamagmoid
pointed magma with an endofunctionsetoid/Bishop set
unital magmaunital magmoid
quasigroupquasigroupoid
looploopoid
semigroupsemicategory
monoidcategory
anti-involutive monoiddagger category
associative quasigroupassociative quasigroupoid
groupgroupoid
flexible magmaflexible magmoid
alternative magmaalternative magmoid
absorption monoidabsorption category
cancellative monoidcancellative category
rigCMon-enriched category
nonunital ringAb-enriched semicategory
nonassociative ringAb-enriched unital magmoid
ringringoid
nonassociative algebralinear magmoid
nonassociative unital algebraunital linear magmoid
nonunital algebralinear semicategory
associative unital algebralinear category
C-star algebraC-star category
differential algebradifferential algebroid
flexible algebraflexible linear magmoid
alternative algebraalternative linear magmoid
Lie algebraLie algebroid
monoidal poset2-poset
strict monoidal groupoid?strict (2,1)-category
strict 2-groupstrict 2-groupoid
strict monoidal categorystrict 2-category
monoidal groupoid(2,1)-category
2-group2-groupoid/bigroupoid
monoidal category2-category/bicategory

Last revised on May 17, 2022 at 14:50:26. See the history of this page for a list of all contributions to it.