nLab Bn-geometry

Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

String theory

Differential cohomology

Contents

Idea

In the context of T-duality and in particular of differential T-duality one considers (as discussed there) fiber products of pairs of torus-fiber bundles equipped with a circle 2-bundle (with connection).

In some disguise, this has been called B nB_n-geometry (Baraglia). The T-duality interpretation is made explicit in Bouwknegt

Here “B nB_n” refers to the special orthogonal group of the form SO(n+1,n)SO(n+1,n), which appears as the structure group of a generalized tangent bundle tensored with a line bundle (the Poincare line bundle of the T-duality correspondence).

Properties

Interpretation in higher differential geometry

We give the interpretation of B nB_n-geometry in higher differential geometry.

For c conn,c conn:XBU(1)c_{conn},c'_{conn} \colon X \to \mathbf{B}U(1) modulating two circle principal bundles with conection, a differential T-duality structure is a choice of trivialization of their cup product class. From this we get the pasting diagram of homotopy pullbacks of smooth \infty-stacks

P× XP^ τ B 2U(1) * X fib() (BU(1))×(BU(1)) * B 3U(1). \array{ P \times_X \hat P&\stackrel{\tau}{\to}& \mathbf{B}^2 U(1) &\to& * \\ \downarrow && \downarrow && \downarrow \\ X &\to& fib(\cup) &\to& (\mathbf{B}U(1)) \times (\mathbf{B}U(1)) \\ &\searrow & \downarrow && \downarrow^{\mathrlap{\cup}} \\ && * &\to& \mathbf{B}^3 U(1) } \,.

Here τ\tau is the morphism that modulates the circle 2-bundle on the fiber product of the two circle bundles.

(…)

References

The term B nB_n-geometry was introduced in

A review is in

The relation to T-duality is made clear around slide 80 of:

  • Peter Bouwknegt, Courant Algebroids and Generalizations of Geometry, talk at StringMath2011 [pdf]

A discussion of the higher Lie theoretic aspects is in

Last revised on September 27, 2024 at 05:34:53. See the history of this page for a list of all contributions to it.