nLab
Taub-NUT space

Contents

Context

Riemannian geometry

Gravity

Contents

Idea

A kind of spacetime. For the moment see at KK-monopole for more.

graphics grabbed from Acharya-Gukov 04

Consider the left invariant 1-forms on the 3-sphere \simeq SU(2), which in terms of Euler angles are

σ 1 =sinψdθcosψsinθdϕ σ 2 =cosψdθ+sinψsinθdϕ σ 3 =dψ+cosθdϕ \begin{aligned} \sigma_1 &= \sin \psi \, d \theta - \cos \psi \sin \theta \, d \phi \\ \sigma_2 & = \cos \psi \, d \theta + \sin \psi \sin \theta \, d \phi \\ \sigma_3 &= d \psi + \cos \theta \, d \phi \end{aligned}

Then the pseudo-Riemannian metric defining the Taub-NUT geometry is

(ds) 2=14r+nrn(dr) 2+rnr+nn 2σ 3 2+14(r 2n 2)(σ 1 2+σ 2 2) (d s)^2 = \frac{1}{4} \frac{r+n}{r-n} (d r)^2 + \frac{r-n}{r+n} n^2 {\sigma_3}^2 + \frac{1}{4}(r^2 - n^2)({\sigma_1}^2 + {\sigma_2}^2)

Properties

Relation to KK-monopoles

geometry transverse to KK-monopolesRiemannian metricremarks
Taub-NUT space:
geometry transverse to
N+1N+1 distinct KK-monopoles
at r i 3i{1,,N+1}\vec r_i \in \mathbb{R}^3 \;\; i \in \{1, \cdots, N+1\}
ds TaubNUT 2U 1(dx 4+ωdr) 2+U(dr) 2, r 3,x 4/(2πR) U1+i=1N+1U i,AAωi=1N+1ω i U iR/2|rr i|,AA×ω=U i\array{d s^2_{TaubNUT} \coloneqq U^{-1}(d x^4 + \vec \omega \cdot d \vec r)^2 + U (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) \\ U \coloneqq 1 + \underoverset{i = 1}{N+1}{\sum} U_i\,, \phantom{AA} \vec \omega \coloneqq \underoverset{i = 1}{N+1}{\sum} \vec \omega_i \\ U_i \coloneqq \frac{R/2}{ {\vert \vec r - \vec r_i\vert} }\,, \phantom{AA} \vec \nabla \times \vec \omega= \vec \nabla U_i}(e.g. Sen 97b, Sect. 2)
ALE space
Taub-NUT close to NN close-by KK-monopoles
e.g. close to r=0\vec r = 0: |r i|R/2,|r|R/21\frac{{\vert \vec r_i\vert}}{R/2}, \frac{{\vert \vec r\vert}}{R/2} \ll 1
ds ALE 2U 1(dx 4+ωdr) 2+U(dr) 2, r 3,x 4/(2πR) Ui=1N+1U i,AAωi=1N+1ω i U iR/2|rr i|,AA×ω=U i\array{d s^2_{ALE} \coloneqq U'^{-1}(d x^4 + \vec \omega \cdot d \vec r)^2 + U' (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) \\ U' \coloneqq \underoverset{i = 1}{N+1}{\sum} U'_i\,, \phantom{AA} \vec \omega \coloneqq \underoverset{i = 1}{N+1}{\sum} \vec \omega_i \\ U'_i \coloneqq \frac{R/2}{ {\vert \vec r - \vec r_i\vert} }\,, \phantom{AA} \vec \nabla \times \vec \omega= \vec \nabla U_i}e.g. via Euler angles: ω=(N+1)R/2(cos(θ)1)dψ\vec \omega = (N+1)R/2(\cos(\theta)-1) d\psi
(e.g. Asano 00, Sect. 2)
A NA_N-type ADE singularity:
ALE space in the limit
where all N+1N+1 KK-monopoles coincide at vecr i=0vec r_i = 0
ds A NSing 2|r|(N+1)R/2(dx 4+ωdr) 2+(N+1)R/2|r|(dr) 2, r 3,x 4/(2πR)\array{d s^2_{A_N Sing} \coloneqq \frac{\vert\vec r\vert }{(N+1)R/2}(d x^4 + \vec \omega \cdot d \vec r)^2 + \frac{ (N+1)R/2}{\vert \vec r\vert} (d \vec r)^2 \,, \\ \vec r \in \mathbb{R}^3,\, x^4 \in \mathbb{R}/(2 \pi R\mathbb{Z}) } (e.g. Asano 00, Sect. 3)

Relation to D6-branes

from M-branes to F-branes: superstrings, D-branes and NS5-branes

M-theory on S A 1×S B 1S^1_A \times S^1_B-elliptic fibrationKK-compactification on S A 1S^1_Atype IIA string theoryT-dual KK-compactification on S B 1S^1_Btype IIB string theoryF-theory on elliptically fibered-K3 fibrationduality between F-theory and heterotic string theoryheterotic string theory on elliptic fibration
M2-brane wrapping S A 1S_A^1double dimensional reduction \mapstotype IIA superstring\mapstotype IIB superstring\mapstoheterotic superstring
M2-brane wrapping S B 1S_B^1\mapstoD2-brane\mapstoD1-brane
M2-brane wrapping pp times around S A 1S_A^1 and qq times around S B 1S_B^1\mapstopp strings and qq D2-branes\mapsto(p,q)-string
M5-brane wrapping S A 1S_A^1double dimensional reduction \mapstoD4-brane\mapstoD5-brane
M5-brane wrapping S B 1S_B^1\mapstoNS5-brane\mapstoNS5-brane\mapstoNS5-brane
M5-brane wrapping pp times around S A 1S_A^1 and qq times around S B 1S_B^1\mapstopp D4-brane and qq NS5-branes\mapsto(p,q)5-brane
M5-brane wrapping S A 1×S B 1S_A^1 \times S_B^1\mapsto\mapstoD3-brane
KK-monopole/A-type ADE singularity (degeneration locus of S A 1S^1_A-circle fibration, Sen limit of S A 1×S B 1S^1_A \times S^1_B elliptic fibration)\mapstoD6-brane\mapstoD7-branesA-type nodal curve cycle degenertion locus of elliptic fibration ADE 2Cycle (Sen 97, section 2)SU-gauge enhancement
KK-monopole orientifold/D-type ADE singularity\mapstoD6-brane with O6-planes\mapstoD7-branes with O7-planesD-type nodal curve cycle degenertion locus of elliptic fibration ADE 2Cycle (Sen 97, section 3)SO-gauge enhancement
exceptional ADE-singularity\mapsto\mapstoexceptional ADE-singularity of elliptic fibration\mapstoE6-, E7-, E8-gauge enhancement

(e.g. Johnson 97, Blumenhagen 10)

References

Discussion in the context of M-theory on G2-manifolds and gauge enhancement

Last revised on December 27, 2018 at 09:46:38. See the history of this page for a list of all contributions to it.