nLab Cartan geometry

Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Riemannian geometry

Contents

Idea

Cartan geometry is geometry of spaces that are locally (infinitesimally, tangentially) like coset spaces G/HG/H, i.e. like Klein geometries. Intuitively, Cartan geometry studies the geometry of a manifold by ‘rolling without sliding’ the ‘model geometry’ G/HG/H along it. Hence Cartan geometry may be thought of as the globalization of the program of Klein geometry initiated in the Erlangen program.

Cartan geometry subsumes many types of geometry, such as notably Riemannian geometry, conformal geometry, parabolic geometry and many more. As a Cartan geometry is defined by principal connection data (hence by cocycles in nonabelian differential cohomology) this means that it serves to express all these kinds of geometries in connection data.

This is used notably in the first order formulation of gravity, which was the motivating example in the original text (Cartan 22). The physics literature tends to use the term “Cartan moving frame method” instead of “Cartan geometry”.

Definition

A Cartan geometry is a space equipped with a Cartan connection. See there for more.

Examples

geometric contextgauge groupstabilizer subgrouplocal model spacelocal geometryglobal geometrydifferential cohomologyfirst order formulation of gravity
differential geometryLie group/algebraic group GGsubgroup (monomorphism) HGH \hookrightarrow Gquotient (“coset space”) G/HG/HKlein geometryCartan geometryCartan connection
examplesEuclidean group Iso(d)Iso(d)rotation group O(d)O(d)Cartesian space d\mathbb{R}^dEuclidean geometryRiemannian geometryaffine connectionEuclidean gravity
Poincaré group Iso(d1,1)Iso(d-1,1)Lorentz group O(d1,1)O(d-1,1)Minkowski spacetime d1,1\mathbb{R}^{d-1,1}Lorentzian geometrypseudo-Riemannian geometryspin connectionEinstein gravity
anti de Sitter group O(d1,2)O(d-1,2)O(d1,1)O(d-1,1)anti de Sitter spacetime AdS dAdS^dAdS gravity
de Sitter group O(d,1)O(d,1)O(d1,1)O(d-1,1)de Sitter spacetime dS ddS^ddeSitter gravity
linear algebraic groupparabolic subgroup/Borel subgroupflag varietyparabolic geometry
conformal group O(d,t+1)O(d,t+1)conformal parabolic subgroupMöbius space S d,tS^{d,t}conformal geometryconformal connectionconformal gravity
supergeometrysuper Lie group GGsubgroup (monomorphism) HGH \hookrightarrow Gquotient (“coset space”) G/HG/Hsuper Klein geometrysuper Cartan geometryCartan superconnection
examplessuper Poincaré groupspin groupsuper Minkowski spacetime d1,1|N\mathbb{R}^{d-1,1\vert N}Lorentzian supergeometrysupergeometrysuperconnectionsupergravity
super anti de Sitter groupsuper anti de Sitter spacetime
higher differential geometrysmooth 2-group GG2-monomorphism HGH \to Ghomotopy quotient G//HG//HKlein 2-geometryCartan 2-geometry
cohesive ∞-group∞-monomorphism (i.e. any homomorphism) HGH \to Ghomotopy quotient G//HG//H of ∞-actionhigher Klein geometryhigher Cartan geometryhigher Cartan connection
examplesextended super Minkowski spacetimeextended supergeometryhigher supergravity: type II, heterotic, 11d

References

The original articles are

  • Élie Cartan, Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion, C. R. Acad. Sci. 174, 593-595 (1922).

  • Élie Cartan, Comptes rendus hebdomadaires des séances de l’Académie des sciences, 174, 437-439, 593-595, 734-737, 857-860, 1104-1107 (January 1922).

  • Élie Cartan, Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Annales scientifiques de l’École Normale Supérieure, Sér. 3, 40 (1923), p. 325-412 (NUMDAM)

Textbook accounts are in

  • R. Sharpe, Differential Geometry – Cartan’s Generalization of Klein’s Erlangen program Springer (1997)

  • Andreas Čap, Jan Slovák, chapter 1 of Parabolic Geometries I – Background and General Theory, AMS 2009 (ISBN:978-1-4704-1381-1)

  • ps

For more see at Cartan connection – References.

Discussion in modal homotopy type theory is in

See also

Last revised on March 27, 2021 at 15:14:45. See the history of this page for a list of all contributions to it.