physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
black hole spacetimes | vanishing angular momentum | positive angular momentum |
---|---|---|
vanishing charge | Schwarzschild spacetime | Kerr spacetime |
positive charge | Reissner-Nordstrom spacetime | Kerr-Newman spacetime |
In the context of gravity (general relativity), higher curvature corrections are modifications of the Einstein-Hilbert action that include not just the linear appearance of the scalar curvature $R$ but higher scalar powers of the Riemann curvature tensor.
When viewing Einstein-Hilbert gravity as an effective field theory valid at low energy, then higher curvature corrections are precisely the terms that may appear at higher energy in pure gravity. Notably the effective field theories induced by string theory come with infinite towers of higher curvature corrections.
In the context of cosmology, higher curvature corrections are a candidate for the inflaton field, see at Starobinsky model of cosmic inflation.
A spacetime that extremizes the Einstein-Hilbert action for given cosmological constant and arbitrary higher curvature correction is called a universal spacetime.
Discussion of quadratic curvature currections includes (see also at Starobinsky model of cosmic inflation)
Discussion of causal locality in the presence of higher curvature corrections includes
Xian O. Camanho, Jose D. Edelstein, Juan Maldacena, Alexander Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling (arXiv:)
Giuseppe D’Appollonio, Paolo Di Vecchia, Rodolfo Russo, Gabriele Veneziano, Regge behavior saves String Theory from causality violations (arXiv:1502.01254)
Discussion in the context of corrections to black hole entropy include
Discussion of higher curvature corrections in cosmology and cosmic inflation (for more see at Starobinsky model of cosmic inflation):
Gustavo Arciniega, Jose D. Edelstein, Luisa G. Jaime, Towards purely geometric inflation and late time acceleration (arXiv:1810.08166)
Gustavo Arciniega, Pablo Bueno, Pablo A. Cano, Jose D. Edelstein, Robie A. Hennigar, Luisa G. Jaimem, Geometric Inflation (arXiv:1812.11187)
Discussion of higher curvature corrections to 11-dimensional supergravity includes
Arkady Tseytlin, $R^4$ terms in 11 dimensions and conformal anomaly of (2,0) theory, Nucl.Phys.B584:233-250, 2000 (arXiv:hep-th/0005072)
Dimitrios Tsimpis, 11D supergravity at $\mathcal{O}(\ell^3)$, JHEP0410:046, 2004 (arXiv:hep-th/0407271)
Paul Howe, $R^4$ terms in supergravity and M-theory (arXiv:hep-th/0408177)
Martin Cederwall, Ulf Gran, Bengt Nilsson, Dimitrios Tsimpis, Supersymmetric Corrections to Eleven-Dimensional Supergravity, JHEP0505:052, 2005 (arXiv:hep-th/0409107)
Anirban Basu, Constraining gravitational interactions in the M theory effective action, Classical and Quantum Gravity, Volume 31, Number 16, 2014 (arXiv:1308.2564)
Bertrand Souères, Dimitrios Tsimpis, The action principle and the supersymmetrisation of Chern-Simons terms in eleven-dimensional supergravity, Phys. Rev. D 95, 026013 (2017) (arXiv:1612.02021)
and from the ABJM model:
Discussion in view of the Starobinsky model of cosmic inflation is in
Katrin Becker, Melanie Becker, Supersymmetry Breaking, M-Theory and Fluxes, JHEP 0107:038,2001 (arXiv:hep-th/0107044)
Kazuho Hiraga, Yoshifumi Hyakutake, Inflationary Cosmology via Quantum Corrections in M-theory (arXiv:1809.04724)
and in view of de Sitter spacetime vacua:
Last revised on March 13, 2019 at 20:28:45. See the history of this page for a list of all contributions to it.