basics
Examples
quantum algorithms:
The physics of solid condensed matter (made of fermions, due to the Pauli exclusion principle), also continuum mechanics.
See at K-theory classification of topological phases of matter.
Textbook accounts:
Charles Kittel, Introduction to Solid State Physics, Wiley (1953-) ISBN:978-0-471-41526-8, pdf, Wikipedia entry
John Slater, Solid-State and Molecular Theory: A Scientific Biography, Wiley (1975) [archive]
Neil Ashcroft, N. David Mermin, Solid State Physics, Saunders College Publishing (1973) [archive, Wikipedia entry]
John W. Negele, Henri Orland, Quantum Many-Particle Systems, Westview Press (1988, 1998) [doi:10.1201/9780429497926]
Naoto Nagaosa, Quantum Field Theory in Condensed Matter Physics, Texts and Monographs in Physics, Springer (1999) [doi:10.1007/978-3-662-03774-4_2]
Alexander L. Fetter, John Dirk Walecka, Quantum theory of many-particle systems, Mcgraw-Hill (1991); Dover (2003) [archive.org]
Ulrich Rößler, Solid State Theory: An Introduction, Springer (2004, 2009) doi:10.1007/978-3-540-92762-4
In terms of quantum field theory:
Eduardo Fradkin: Field Theories of Condensed Matter Physics, Cambridge University Press (2013) [doi:10.1017/CBO9781139015509, ISBN:9781139015509]
Eduardo C. Marino, Quantum Field Theory Approach to Condensed Matter Physics, Cambridge University Press (2017) [doi:10.1017/9781139696548]
With an emphasis on non-perturbative quantum field theory:
Lecture notes:
Specifically on Bloch-Floquet theory:
With focus on semiconductor-theory:
Karlheinz Seeger, Semiconductor Physics, Advanced texts in physics, Springer (2004) doi:10.1007/978-3-662-09855-4
Sheng San Li, Semiconductor Physical Electronics, Springer (2006) 61-104 doi:10.1007/0-387-37766-2
See also:
and maybe also
Discussion of possible realization of the SYK-model in condensed matter physics:
On AdS/CFT in condensed matter physics:
Proposed realization of aspects of p-adic AdS/CFT correspondence in solid state physics:
Classification of condensed matter with gapped Hamiltonians (topological insulators, topological phases of matter) by twisted equivariant topological K-theory:
Alexei Kitaev, Periodic table for topological insulators and superconductors, talk at: L.D.Landau Memorial Conference “Advances in Theoretical Physics”, June 22-26, 2008, In:AIP Conference Proceedings 1134, 22 (2009) (arXiv:0901.2686, doi:10.1063/1.3149495)
Daniel Freed, Gregory Moore, Twisted equivariant matter, Ann. Henri Poincaré (2013) 14: 1927 (arXiv:1208.5055)
Guo Chuan Thiang, On the K-theoretic classification of topological phases of matter, Annales Henri Poincare 17(4) 757-794 (2016) (arXiv:1406.7366)
Ralph M. Kaufmann, Dan Li, Birgit Wehefritz-Kaufmann, Topological insulators and K-theory (arXiv:1510.08001, spire:1401095/)
Daniel Freed, Michael Hopkins, Reflection positivity and invertible topological phases (arXiv:1604.06527)
Daniel Freed, Lectures on field theory and topology (cds:2699265)
Charles Zhaoxi Xiong, Classification and Construction of Topological Phases of Quantum Matter (arXiv:1906.02892)
Discussion of exotic phases of matter via tensor network states:
General:
Roman Orus, A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, Annals of Physics 349 (2014) 117-158 (arXiv:1306.2164)
Jens Eisert, Entanglement and tensor network states, Modeling and Simulation 3, 520 (2013) (arXiv:1308.3318)
Thorsten B. Wahl, Tensor network states for the description of quantum many-body systems (arXiv:1509.05984)
Specifically tree tensor networks:
Concrete materials:
Last revised on January 13, 2025 at 18:57:30. See the history of this page for a list of all contributions to it.