univalence axiom



Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type
falseinitial objectempty type
proposition(-1)-truncated objecth-proposition, mere proposition
proofgeneralized elementprogram
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
logical conjunctionproductproduct type
disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)
implicationinternal homfunction type
negationinternal hom into initial objectfunction type into empty type
universal quantificationdependent productdependent product type
existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)
equivalencepath space objectidentity type/path type
equivalence classquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
completely presented setdiscrete object/0-truncated objecth-level 2-type/preset/h-set
setinternal 0-groupoidBishop set/setoid
universeobject classifiertype of types
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels


Equality and Equivalence


Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology



Paths and cylinders

Homotopy groups

Basic facts




In intensional type theory, identity types behave like path space objects; this viewpoint is called homotopy type theory. This induces furthermore a notion of homotopy fibers, hence of homotopy equivalences between types.

On the other hand, if type theory contains a universe Type, so that types can be considered as points of TypeType, then between two types we also have an identity type Paths Type(X,Y)Paths_{Type}(X,Y). The univalence axiom says that these two notions of “sameness” for types are the same.

Extensionality principles like function extensionality, propositional extensionality, and univalence (“typal extensionality”) are naturally regarded as a stronger form of identity of indiscernibles. In particular, the consistency of univalence means that in Martin-Löf type theory without univalence, one cannot define any predicate that provably distinguishes isomorphic types; thus isomorphic types are “externally indiscernible”, and univalence incarnates that principle internally by making them identical.

The name univalence (due to Voevodsky) comes from the following reasoning. A fibration or bundle p:EBp\colon E\to B of some sort is commonly said to be universal if every other bundle of the same sort is a pullback of pp in a unique way (up to homotopy). Less commonly, a bundle is said to be versal if every other bundle is a pullback of it in some way, not necessarily unique. By contrast, a bundle is said to be univalent if every other bundle is a pullback of it in at most one way (up to homotopy). In the language of (∞,1)-category theory, a univalent bundle is an object classifier.

The univalence axiom does not literally say that anything is univalent in this sense. However, it is equivalent to saying that the canonical fibration over TypeType is univalent: every fibration with small fibers is an essentially unique pullback of this one (while those with large fibers are not, they are pullbacks of the next higher Type 1Type_1). For a description of this equivalence, see section 4.8 of the HoTT Book (syntactically) and Gepner-Kock (semantically).


We state univalence first in (intensional) type theory and then in its categorical semantics.

In the type theory

Let XX and YY be types. There is a canonically defined map from the identity type (X=Y)(X = Y) of paths (in Type) between them to the function type (XY)(X \stackrel{\simeq}{\to} Y) of equivalences in homotopy type theory between them. It can be defined by path induction, i.e. the eliminator for the identity types, by specifying that it takes the identity path 1 X:(X=X)1_X \colon (X=X) to the identity equivalence of XX.

Univalence: For any two types X,YX,Y, this map (X=Y)(XY)(X=Y)\to (X\simeq Y) is an equivalence.

When XX and YY are propositions, univalence corresponds to propositional extensionality.

Univalence is a commonly assumed axiom in homotopy type theory, and is central to the proposal (Voevodsky) that this provides a natively homotopy theoretic foundation of mathematics (see at univalent foundations for mathematics).

In categorical semantics

Let 𝒞\mathcal{C} be a locally cartesian closed model category in which all objects are cofibrant.

By the categorical semantics of homotopy type theory, a dependent type

b:BE(b):Type b : B \vdash E(b) : Type

corresponds to a morphism EBE \to B in 𝒞\mathcal{C} that is a fibration between fibrant objects.

Then the dependent function type

b 1,b 2:B(E(b 1)E(b 2)):Type b_1, b_2 : B \vdash ( E(b_1) \to E(b_2)) : Type

is interpreted as the internal hom [,] 𝒞/ B×B[-,-]_{\mathcal{C}/_{B \times B}} in the slice category 𝒞/ B×B\mathcal{C}/_{B \times B} after extending EE to the context B×BB \times B by pulling back along the two projections p 1,p 2:B×BBp_1, p_2 : B \times B \to B, respectively. Hence this is interpreted as

[p 1 *E,p 2 *E] 𝒞/ B×B[E×B,B×E] 𝒞/ B×B𝒞/ B×B. [p_1^* E \, , \, p_2^* E]_{\mathcal{C}/_{B \times B}} \simeq [E \times B \, , \, B \times E]_{\mathcal{C}/_{B \times B}} \in \mathcal{C}/_{B \times B} \,.

Consider then the diagonal morphism Δ B:BB×B\Delta_B : B \to B \times B in 𝒞\mathcal{C} as an object of 𝒞/ B×B\mathcal{C}/_{B \times B}. We would like to define a morphism

q:Δ B[E×B,B×E] 𝒞/ B×B. q \colon \Delta_B \to [E \times B , B \times E]_{\mathcal{C}/_{B \times B}} \,.

in 𝒞/ B×B\mathcal{C}/_{B \times B}. By the defining (product \dashv internal hom)-adjunction, it suffices to define a morphism

Δ B× 𝒞/ B×BE×BB×E \Delta_B \times_{\mathcal{C}/_{B \times B}} E \times B \to B \times E

in 𝒞/ B×B\mathcal{C}/_{B \times B}. But now by the universal property of pullback, it suffices to define just in 𝒞 /B\mathcal{C}_{/B} a morphism

Δ B× 𝒞/ B×BE×BΔ B× 𝒞/ B×BB×E. \Delta_B \times_{\mathcal{C}/_{B \times B}} E \times B \to \Delta_B \times_{\mathcal{C}/_{B \times B}} B \times E\,.

And since the composite pullback along either composite

BΔ BB×Bπ 1B B \xrightarrow{\Delta_B} B\times B \xrightarrow{\pi_1} B
BΔ BB×Bπ 2B B \xrightarrow{\Delta_B} B\times B \xrightarrow{\pi_2} B

is the identity, both Δ B× 𝒞/ B×BE×B\Delta_B \times_{\mathcal{C}/_{B \times B}} E \times B and Δ B× 𝒞/ B×BB×E\Delta_B \times_{\mathcal{C}/_{B \times B}} B \times E are isomorphic to EE; thus here we can take the identity morphism.

Now, using the path object factorization in 𝒞\mathcal{C}

B B I Δ B B×B \array{ B &&\stackrel{\simeq}{\hookrightarrow}&& B^I \\ & {}_{\mathllap{\Delta_B}}\searrow && \swarrow_{\mathrlap{}} \\ && B \times B }

by an acyclic cofibration followed by a fibration, we obtain a fibrant replacement of Δ B\Delta_B in the slice model category 𝒞 B×B\mathcal{C}_{B \times B}.

Since also [E×B,B×E] 𝒞/ B×B[E \times B, B \times E]_{\mathcal{C}/_{B \times B}} is fibrant by the axioms on the locally cartesian closed model category 𝒞\mathcal{C}, we have a lift q^\hat q in the diagram in 𝒞/ B×B\mathcal{C}/_{B \times B}

B q [E×B,B×E] 𝒞/ B×B q^ B I B×B=* 𝒞/ B×B. \array{ B &\stackrel{q}{\to}& [E \times B, B \times E]_{\mathcal{C}/_{B \times B}} \\ \downarrow &{}^{\mathllap{\hat q}}\nearrow& \downarrow \\ B^I &\to& B \times B = *_{\mathcal{C}/_{B \times B}} } \,.

This lift is the interpretation of the path induction that deduces a map on all paths γB I\gamma \in B^I from one on just the identity paths id bBB Iid_b \in B \hookrightarrow B^I.

Finally, let Eq(E)[E×B,B×E] 𝒞/ B×BEq(E) \hookrightarrow [E \times B , B \times E]_{\mathcal{C}/_{B \times B}} be the subobject on the weak equivalences (…), and observe that qq and q^\hat q factor through this to give a morphism

q^:B IEq(E). \hat q : B^I \to Eq(E) \,.

The fibration EBE \to B is univalent in 𝒞\mathcal{C} if this morphism is a weak equivalence. By the 2-out-of-3 property, of course, it is equivalent to ask that q:BEq(E)q\colon B\to Eq(E) be a weak equivalence.


In simplicial sets

We specialize the general discussion above to the realization in 𝒞=\mathcal{C} = sSet, equipped with the standard model structure on simplicial sets.

For EBE \to B any fibration (Kan fibration) between fibrant objects (Kan complexes), consider first the simplicial set

[E×B,B×E] B×BsSet/ B×B [E \times B , B \times E]_{B \times B} \in sSet/_{B \times B}

defined as the internal hom in the slice category sSet/ B×BsSet/_{B \times B}.

Notice that the vertices of this simplicial set over a fixed pair (b 1,b 2):*B×B(b_1, b_2) : * \to B \times B of vertices in BB form the set of morphisms E b 1E b 2E_{b_1} \to E_{b_2} between the fibers in sSetsSet.

This is because – by the defining property of the internal hom in the slice and using that products in sSet/ B×BsSet/_{B \times B} are pullbacks in sSetsSet – the horizontal morphisms of simplcial sets in

* [E×B,B×E] B×B (b 1,b 2) B×B \array{ * &&\to&& [E \times B, B \times E]_{B \times B} \\ & {}_{\mathllap{(b_1,b_2)}}\searrow && \swarrow \\ && B \times B }

correspond bijectively to the horizontal morphisms in

E b 1×{b 2} {b 1}×E b 2 B×B \array{ E_{b_1} \times \{b_2\} &&\to&& \{b_1\} \times E_{b_2} \\ & \searrow && \swarrow \\ && B \times B }

in sSetsSet, which are precisely morphisms E b 1E b 2E_{b_1} \to E_{b_2}.

Let then

Eq(E)[E×B,B×E] B×BsSet/ B×B Eq(E) \hookrightarrow [E \times B, B \times E]_{B \times B} \in sSet/_{B \times B}

be the full sub-simplicial set on those vertices that correspond to weak equivalences ((weak) homotopy equivalences).

By a similar consideration, one sees that the diagonal morphism Δ B:BB×B\Delta_B : B \to B \times B in sSetsSet, regarded as an object BsSet/ B×BB \in sSet/_{B \times B}, comes with a canonical morphism

BEq(E). B \to Eq(E) \,.

The fibration EBE \to B is univalent, precisely when this morphism is a weak equivalence.

This appears originally as Voevodsky, def. 3.4

In simplicial presheaves


See (Shulman 12, UF 13)



Relation to function extensionality

The univalence axiom implies function extensionality.

A commented version of a formal proof of this fact can be found in (Bauer-Lumsdaine).

Weaker equivalent forms

The univalence axiom proper says that the canonical map coe:(X=Y)(XY)coe:(X=Y)\to (X\simeq Y) is an equivalence. However, there are several seemingly-weaker (and therefore often easier to verify) statements that are equivalent to this, such as:

  1. For any type XX, the type Y:U(XY)\sum_{Y:U} (X\simeq Y) is contractible. This follows since then the map on total spaces from Y:U(X=Y)\sum_{Y:U} (X=Y) to Y:U(XY)\sum_{Y:U} (X\simeq Y) induced by coecoe is an equivalence, hence a fiberwise equivalence (X=Y)(XY)(X=Y) \simeq (X\simeq Y).

  2. For any X,Y:UX,Y:U we have a map ua:(XY)(X=Y)ua:(X\simeq Y) \to (X=Y) such that coe(ua(f))=fcoe(ua(f)) = f. This exhibits XYX\simeq Y as a retract of X=YX=Y, hence Y:U(XY)\sum_{Y:U} (X\simeq Y) as a retract of the contractible type Y:U(X=Y)\sum_{Y:U} (X=Y), so it is contractible. This was observed by Dan Licata.

  3. Ian Orton and Andrew Pitts showed here that assuming function extensionality, this can be further simplified to the following special cases:

    • unit:A= a:A1unit : A = \sum_{a:A} 1
    • flip:( a:A b:BC(a,b))=( b:B a:AC(a,b))flip : (\sum_{a:A} \sum_{b:B} C(a,b)) = (\sum_{b:B} \sum_{a:A} C(a,b))
    • contract:IsContr(A)(A=1)contract: IsContr(A) \to (A=1)
    • unit β:coe(unit(a))=(a,)unit_\beta : coe(unit(a)) = (a,\star)
    • flip β:coe(flip(a,b,c))=(b,a,c)flip_\beta : coe(flip(a,b,c)) = (b,a,c).

    The proof constructs ua(f):A=Bua(f): A=B (for f:ABf:A\simeq B) as the composite

    A=unit a:A1=contract a:A b:Bfa=b=flip b:B a:Afa=b=contract b:B1=unitB A \overset{unit}{=} \sum_{a:A} 1 \overset{contract}{=} \sum_{a:A} \sum_{b:B} f a=b \overset{flip}{=} \sum_{b:B} \sum_{a:A} f a = b \overset{contract}{=} \sum_{b:B} 1 \overset{unit}{=} B

    and uses unit βunit_\beta and flip βflip_\beta to compute that coe(ua(f))(a)=f(a)coe(ua(f))(a) = f(a), hence by function extensionality coe(ua(f))=fcoe(ua(f)) = f.


It is currently open whether the univalence axiom enjoys canonicity in general, but for the special case of 1-truncated homotopy types (groupoids) (and two nested univalent universes and function extensionality), a “homotopical” sort of canonicity has been shown in (Shulman 12, section 13. Thus, in univalent homotopy 1-type theory with two universes, every term of type of the natural numbers is propositionally equal to a numeral.

The construction in (Shulman 12, section 13) uses Artin gluing of a suitable type-theoretic fibration category with the category Set and Grpd, respectively, effectively inducing canonicity from these categories. By (Shulman 12, remark 13.13) for this construction to generalize to untruncated univalent type theory, one seems to need a sufficiently strict global sections functor with values in some model for infinity-groupoids. A proof of the full result has been announced by Christian Sattler and Krzysztof Kapulkin (Sattler 19).

Notice that this sort of canonicity does not yet imply computational effectiveness?, which would require also an algorithm to extract that numeral from the given term. There may be such an algorithm, but so far attempts to extract one from the proof (or to give a constructive version of the proof, which would imply the existence of an algorithm) have not succeeded.

It is also a propositional canonicity, as opposed to the judgmental canonicity which many traditional type theories enjoy. Another approach to canonicity for 1-truncated univalence can be found in (Harper-Licata), which involves modifying the type theory by adding more judgmental equalities, resulting in a judgmental canonicity. However, no algorithm for computing canonical forms has yet been given for this approach either.

Canonicity has been proved for cubical type theory.

One might also try to construct the Hoffman-Streicher groupoid model in a constructive framework; Awodey and Bauer have done some work in this direction with an impredicative universe of h-sets.


The earliest occurrence of the univalence axiom is due to:

under the name “universe extensionality”. These authors formulate almost the modern univalence axiom; the only difference is the lack of a coherent definition of equivalence.

The univalence axiom has famously come to be attributed to Vladimir Voevodsky, though early documentation is hard to come by.

The first technical understanding of univalence in simplicial sets seems to be due to:

(which 6 years later came to be written up as Kapulkin, Lumsdaine & Voevodsky12).

The first mentioning by Voevodsky of the term “univalence” by email is 3.5 years later, from Dec. 30 2009 (according to Grayson, Oct. 2017).

The earliest accounts by Voevodsky’s hand date from 2010, but the un-iniated may have trouble recognizing the univalence axiom here:

Later in:

appears the claim that:

have been working on the ideas that led to the discovery of univalent models since 2005 and gave the first public presentation on this subject at Ludwig-Maximilians-Universität München in November 2009.

A clean and comprehensive discussion finally appears in the textbook:

Exposition and survey:

An accessible account of Voevodsky’s proof (following Bousfield 06) that the universal Kan fibration in simplicial sets is univalent:

A quick elegant proof of the object classifier/universal associated infinity-bundle in simplicial sets/\infty-groupoids is in

See also

The HoTT-Coq code is at

A guided walk through the formal proof that univalence implies functional extensionality is at

A discussion of univalence in categories of diagrams over an inverse category with values in a category for which univalence is already established is discussed in

This discusses canonicity of univalence in its section 13. Another approach to showing canonicity is (via cubical sets) in

A proof of canonicity is presented in the talk

On the issue of strict pullback of the univalent universe see

  • Univalent Foundations Mailing List, Quotients, March 2013

The computational interpretation of univalence / canonicity is discussed in

and realized in cubical type theory in

A study of the semantic side of univalence in (infinity,1)-toposes, as well as further cases of locally cartesian closed (infinity,1)-categories is in

This does not yet show that the univalence axiom in its usual form holds in the internal type theory of (infinity,1)-toposes, however, due to the lack of a (known) sufficiently strict model for the object classifier. (But it works with Tarskian type universes, see there). Constructions of such a model in some very special cases are in Shulman12 above, and also in

Finally, full proof that all ∞-stack (∞,1)-topos have presentations by model categories which interpret (provide categorical semantics) for homotopy type theory with univalent type universes:

For more references see homotopy type theory.

Last revised on May 20, 2021 at 00:38:02. See the history of this page for a list of all contributions to it.