nLab entanglement



Quantum systems

quantum logic

quantum physics

quantum probability theoryobservables and states

quantum information

quantum computation


quantum algorithms:

quantum sensing

quantum communication

Monoidal categories

monoidal categories

With braiding

With duals for objects

With duals for morphisms

With traces

Closed structure

Special sorts of products



Internal monoids



In higher category theory



While in classical mechanics a (pure) state is an element of an object in a cartesian monoidal category, in contrast in quantum mechanics a pure state is an element of an object in a non-cartesian monoidal category (say of Hilbert spaces). As a result, in quantum mechanics a state of a compound physical system may not come from a pair of states of the two subsystems, but instead be a nontrivial sum – a superposition – of such. These non-classical combinations of states of subsystems are called entangled states.


In quantum mechanics a state of a physical system is represented by a vector in some (Hilbert-)vector space HH. If the system is the composite of two subsystems with state spaces H 1H_1 and H 2H_2, respectively, then the state space of the total system is the tensor product H=H 1H 2H = H_1 \otimes H_2. The universal property of the tensor product gives a bilinear map

p:H 1×H 2H 1H 2 p : H_1 \times H_2 \to H_1 \otimes H_2

which sends a pair of states (ψ 1,ψ 2)(\psi_1, \psi_2) to their tensor product ψ 1ψ 2\psi_1 \otimes \psi_2. States in the image of pp are called product states or separable states. An entangled state is a state which is not a product state.


Consider two quantum systems, AA and BB, with state vectors |Ψ (A)|\Psi^{(A)}\rangle and |Ψ (B)|\Psi^{(B)}\rangle respectively. The combined state of the system may be described by a single state vector |Ψ (AB)=|Ψ (A)|Ψ (B)|\Psi^{(AB)}\rangle=|\Psi^{(A)}\rangle \otimes |\Psi^{(B)}\rangle.

As an example, suppose that in the basis {|0,|1}\{|0\rangle ,|1\rangle\}, |Ψ (A)=12(|0+|1)|\Psi^{(A)}\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle +|1\rangle\right). This can be interpreted as system AA being in state |0|0\rangle with probability 1/2 and state |1|1\rangle with probability 1/2. Suppose further that |Ψ (B)=|0|\Psi^{(B)}\rangle = |0\rangle. Then we have

|Ψ (AB)=|Ψ (A)|Ψ (B)=12(|0+|1)|0=12(|00+|10)|\Psi^{(AB)}\rangle=|\Psi^{(A)}\rangle \otimes |\Psi^{(B)}\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle +|1\rangle\right)\otimes|0\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle +|10\rangle\right).

Such a state is said to be a product state because it is “factorable” or equivalently separable, i.e. it can be formed from some combination of individual states in the basis.

Compare the above example to the state

|Ψ (AB)=12(|00+|11)|\Psi^{(AB)}\rangle=\frac{1}{\sqrt{2}}\left(|00\rangle +|11\rangle\right).

This state is not a product state since it cannot be formed from any combination of individual states in the given basis. Such a state is known as an entangled state because it is said to be non-factorable or non-separable. The entangled states discussed above are, in fact, pure states rather than mixed states because they cannot be broken down further. However, there is also a notion of entanglement for mixed states.



The following refers to (Coecke-Kissinger).

Often if multi-party state?s can be inter-converted via local operations, they are considered to be the same. This can be made formal by the following definition.


Two states |Ψ,|ΦH i|\Psi\rangle,|\Phi\rangle \in \bigotimes H_i are said to be equivalent up to local operations with classical communication (LOCC) if they can be inter-converted by a protocol involving any number of steps where (i) one party applies a local unitary operation U:H iH iU : H_i \rightarrow H_i or (ii) one party sends some classical information to another.

Such a protocol is reversible, so since protocols compose, this generates an equivalence relation. While this removes a good deal of redundancy from the study of entanglement, it is often useful to use an even more course-grained relation.


Two states |Ψ,|ΦH i|\Psi\rangle,|\Phi\rangle \in \bigotimes H_i are said to be equivalent up to stochastic LOCC (SLOCC) if they can be inter-converted with some non-zero probability a protocol involving any number of steps where (i) one party applies a an arbitrary local operation L:H iH iL : H_i \rightarrow H_i or (ii) one party sends some classical information to another.

An example of a local stochastic operation is as follows. Suppose Alice and Bob share a state |ΨH AH B|\Psi\rangle \in H_A \otimes H_B and Alice wishes to perform some operation LL. Alice prepares an ancilla qubit |0 2|0\rangle \in \mathbb{C}^2 and performs a unitary operation

U: 2H 1 2H 1 U : \mathbb{C}^2 \otimes H_1 \rightarrow \mathbb{C}^2 \otimes H_1

on her qubit as well as her part of the state |Ψ|\Psi\rangle. She then measures the ancilla qubit. If she gets an outcome of |0|0\rangle, she has performed some operation L:H AH AL : H_A \rightarrow H_A and if she gets outcome |1|1\rangle she has performed L:H AH AL' : H_A \rightarrow H_A. The probability of Alice successfully performing LL is then the probability of getting the outcome of |0|0\rangle when she performed her measurement.


Two states are SLOCC-equivalent iff they can be inter-converted by applying arbitrary invertible local operations (ILOs).

Its easy to show using the Schur decomposition that there are only two SLOCC-equivalence classes in 2 2\mathbb{C}^2 \otimes \mathbb{C}^2, namely the product state class and the Bell state class. Perhaps more surprising is the following result to to Dur, Vidal, and Cirac. [2]


Any genuine tripartite state |Ψ\Psi> 2 2 2\in \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 is SLOCC-equivalent to either |W> or |GHZ>;.

By genuine, they mean a state that is not a product of smaller states. The two states are defined as:

|W=|100+|010+|001|GHZ=|000+|111 |W\rangle = |100\rangle + |010\rangle + |001\rangle \qquad\qquad |GHZ\rangle = |000\rangle + |111\rangle

Each of these states yields the structure of a commutative Frobenius algebra. |GHZ|GHZ\rangle yields a special CFA and |W|W\rangle yields an “anti-special” CFA. This structure serves to uniquely identity these states (up to SLOCC) in 2\mathbb{C}^2. [1]

quantum probability theoryobservables and states


Early discussion of composite quantum systems and their quantum entanglement:

Introduction and review:

Extensive survey of the field:

As a notion in quantum information theory:

In relation to correlation:

  • Shun-long Luo, You-feng Luo, Correlation and Entanglement, Acta Mathematicae Applicatae Sinica 19 (2003) 581–598 [[doi:10.1007/s10255-003-0133-z]]

and in relation to quantum computation/quantum supremacy:

  • John Preskill: Quantum computing and the entanglement frontier: pp. 63-80 in: The Theory of the Quantum World – Proceedings of the 25th Solvay Conference on Physics, World Scientific (2013) [arXiv:1203.5813, doi:10.1142/8674, slides: pdf]

and in the context of entanglement entropy of topological phases of matter:

Exposition of entanglement as a phenomenon of non-Cartesian monoidal categories:

A discussion in quantum mechanics in terms of dagger-compact categories is in

See also

  • W. Dür, G. Vidal, J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A. 62, 062314

Discussion in quantum optics:

A connection to algebraic geometry is proposed in

  • Frédéric Holweck, Jean-Gabriel Luque, Jean-Yves Thibon, Geometric descriptions of entangled states by auxiliary varieties, J. Math. Phys. 53, 102203 (2012); doi

The following work included the consideration of identical particles into the study of quantum entanglement. In this case, the usage of partial trace may not be suitable and instead subsystems are described in terms of subalgebras. The work is in operator algebraic framework, based on usage of GNS construction and related to the consideration of von Neumann entropy.

  • A. P. Balachandran, T. R. Govindarajan, Amilcar R. de Queiroz, A. F. Reyes-Lega, Entanglement and particle identity: a unifying approach, Phys. Rev. Lett. 110, 080503 (2013) arxiv/1303.0688; Algebraic approach to entanglement and entropy, arxiv/1301.1300; Entanglement, particle identity and the GNS construction: a unifying approach arxiv/1205.2882 (earlier, longer version, overlapping with 1303.0688)

Use of homological algebra for quantifying entanglement:

category: physics

Last revised on September 22, 2023 at 17:02:50. See the history of this page for a list of all contributions to it.