nLab
spatial type theory
Context
Type theory
Topology
topology (point-set topology , point-free topology )
see also differential topology , algebraic topology , functional analysis and topological homotopy theory
Introduction
Basic concepts
open subset , closed subset , neighbourhood
topological space , locale
base for the topology , neighbourhood base
finer/coarser topology
closure , interior , boundary
separation , sobriety
continuous function , homeomorphism
uniformly continuous function
embedding
open map , closed map
sequence , net , sub-net , filter
convergence
category Top
Universal constructions
Extra stuff, structure, properties
nice topological space
metric space , metric topology , metrisable space
Kolmogorov space , Hausdorff space , regular space , normal space
sober space
compact space , proper map
sequentially compact , countably compact , locally compact , sigma-compact , paracompact , countably paracompact , strongly compact
compactly generated space
second-countable space , first-countable space
contractible space , locally contractible space
connected space , locally connected space
simply-connected space , locally simply-connected space
cell complex , CW-complex
pointed space
topological vector space , Banach space , Hilbert space
topological group
topological vector bundle , topological K-theory
topological manifold
Examples
empty space , point space
discrete space , codiscrete space
Sierpinski space
order topology , specialization topology , Scott topology
Euclidean space
cylinder , cone
sphere , ball
circle , torus , annulus , Moebius strip
polytope , polyhedron
projective space (real , complex )
classifying space
configuration space
path , loop
mapping spaces : compact-open topology , topology of uniform convergence
Zariski topology
Cantor space , Mandelbrot space
Peano curve
line with two origins , long line , Sorgenfrey line
K-topology , Dowker space
Warsaw circle , Hawaiian earring space
Basic statements
Theorems
Analysis Theorems
topological homotopy theory
Contents
Idea
A modal dependent type theory with the sharp modality ♯ \sharp and the flat modality ♭ \flat . Spatial type theory which is also a homotopy type theory is called spatial homotopy type theory .
Presentation
In this presentation of spatial type theory , we assume a dependent type theory with crisp term judgments a : : A a::A in addition to the usual (cohesive) type and term judgments A type A \; \mathrm{type} and a : A a:A , as well as context judgments Ξ | Γ ctx \Xi \vert \Gamma \; \mathrm{ctx} where Ξ \Xi is a list of crisp term judgments, and Γ \Gamma is a list of cohesive term judgments. A crisp type is a type in the context Ξ | ( ) \Xi \vert () , where ( ) () is the empty list of cohesive term judgments.
Identity types
In addition, we also assume the dependent type theory has typal equality :
Formation rule for identity types:
Ξ | Γ ⊢ A type Ξ | Γ ⊢ a : A Ξ | Γ ⊢ b : A Ξ | Γ ⊢ a = A b type \frac{\Xi \vert \Gamma \vdash A \; \mathrm{type} \quad \Xi \vert \Gamma \vdash a:A \quad \Xi \vert \Gamma \vdash b:A}{\Xi \vert \Gamma \vdash a =_A b \; \mathrm{type}}
Introduction rule for identity types:
Ξ | Γ ⊢ A type Ξ | Γ ⊢ a : A Ξ | Γ ⊢ refl A ( a ) : a = A a \frac{\Xi \vert \Gamma \vdash A \; \mathrm{type} \quad \Xi \vert \Gamma \vdash a:A}{\Xi \vert \Gamma \vdash \mathrm{refl}_A(a) : a =_A a}
Elimination rule for identity types:
Ξ | Γ , x : A , y : A , p : a = A b ⊢ C type Ξ | Γ , z : A ⊢ t : C [ z / a , z / b , refl A ( z ) / p ] Ξ | Γ ⊢ a : A Ξ | Γ ⊢ b : A Ξ | Γ ⊢ q : a = A b Ξ | Γ ⊢ ind = A x , y , p . C ( z . t , a , b , q ) : C [ a , b , q / x , y , p ] \frac{\Xi \vert \Gamma, x:A, y:A, p:a =_A b \vdash C \; \mathrm{type} \quad \Xi \vert \Gamma, z:A \vdash t:C[z/a, z/b, \mathrm{refl}_A(z)/p] \quad \Xi \vert \Gamma \vdash a:A \quad \Xi \vert \Gamma \vdash b:A \quad \Xi \vert \Gamma \vdash q:a =_A b}{\Xi \vert \Gamma \vdash \mathrm{ind}_{=_A}^{x,y,p.C}(z.t, a, b, q):C[a, b, q/x, y, p]}
Computation rules for identity types:
Ξ | Γ , x : A , y : A , p : a = A b ⊢ C type Ξ | Γ , z : A ⊢ t : C [ z / a , z / b , refl A ( z ) / p ] Ξ | Γ ⊢ a : A Ξ | Γ ⊢ β = A x , y , p . C ( a ) : ind = A x , y , p . C ( z . t , a , a , refl ( a ) ) = C [ a , a , refl A ( a ) / x , y , p ] t \frac{\Xi \vert \Gamma, x:A, y:A, p:a =_A b \vdash C \; \mathrm{type} \quad \Xi \vert \Gamma, z:A \vdash t:C[z/a, z/b, \mathrm{refl}_A(z)/p] \quad \Xi \vert \Gamma \vdash a:A}{\Xi \vert \Gamma \vdash \beta_{=_A}^{x,y,p.C}(a):\mathrm{ind}_{=_A}^{x,y,p.C}(z.t, a, a, \mathrm{refl}(a)) =_{C[a, a, \mathrm{refl}_A(a)/x, y, p]} t}
Sharp modality
The sharp modality is given by the following rules:
Formation rule for sharp types:
Ξ , Γ | ( ) ⊢ A type Ξ | Γ ⊢ ♯ A type ♯ − form \frac{\Xi, \Gamma \vert () \vdash A \; \mathrm{type}}{\Xi \vert \Gamma \vdash \sharp A \; \mathrm{type}}\sharp-\mathrm{form}
Introduction rule for sharp types:
Ξ , Γ | ( ) ⊢ a : A Ξ | Γ ⊢ a ♯ : ♯ A ♯ − intro \frac{\Xi, \Gamma \vert () \vdash a:A}{\Xi \vert \Gamma \vdash a^\sharp:\sharp A}\sharp-\mathrm{intro}
Elimination rule for sharp types:
Ξ | ( ) ⊢ a : ♯ A Ξ | Γ ⊢ a ♯ : A ♯ − elim \frac{\Xi \vert () \vdash a:\sharp A}{\Xi \vert \Gamma \vdash a_\sharp:A}\sharp-\mathrm{elim}
Computation rule for sharp types:
Ξ | ( ) ⊢ a : A Ξ | Γ ⊢ β ♯ A ( a ) : ( a ♯ ) ♯ = A a ♯ − comp \frac{\Xi \vert () \vdash a:A}{\Xi \vert \Gamma \vdash \beta_{\sharp A}(a):(a^\sharp)_\sharp =_A a}\sharp-\mathrm{comp}
Uniqueness rule for sharp types:
Ξ | ( ) ⊢ a : ♯ A Ξ | Γ ⊢ η ♯ A ( a ) : ( a ♯ ) ♯ = ♯ A a ♯ − uniq \frac{\Xi \vert () \vdash a:\sharp A}{\Xi \vert \Gamma \vdash \eta_{\sharp A}(a):(a_\sharp)^\sharp =_{\sharp A} a}\sharp-\mathrm{uniq}
Flat modality
The flat modality is given by the following rules:
Formation rule for flat types:
Ξ , Γ | ( ) ⊢ A type Ξ | Γ ⊢ ♭ A type ♭ − form \frac{\Xi, \Gamma \vert () \vdash A \; \mathrm{type}}{\Xi \vert \Gamma \vdash \flat A \; \mathrm{type}}\flat-\mathrm{form}
Introduction rule for flat types:
Ξ , Γ | ( ) ⊢ a : A Ξ | Γ ⊢ a ♭ : ♭ A ♭ − intro \frac{\Xi, \Gamma \vert () \vdash a:A}{\Xi \vert \Gamma \vdash a^\flat:\flat A}\flat-\mathrm{intro}
Elimination rule for flat types:
Ξ | Γ , x : ♭ A ⊢ C type Ξ | Γ ⊢ M : ♭ A Ξ , u : : A | Γ ⊢ N : C [ u ♭ / x ] Ξ | Γ ⊢ ( let u ♭ ≔ M in n ) : C [ M / x ] ♭ − elim \frac{\Xi \vert \Gamma, x:\flat A \vdash C \; \mathrm{type} \quad \Xi \vert \Gamma \vdash M:\flat A \quad \Xi, u::A \vert \Gamma \vdash N : C[u^\flat/x]}{\Xi \vert \Gamma \vdash (\mathrm{let}\; u^\flat \coloneqq M \;\mathrm{in}\; n):C[M/x]}\flat-\mathrm{elim}
Computation rule for flat types:
Ξ | Γ , x : ♭ A ⊢ C type Ξ | ( ) ⊢ M : ♭ A Ξ , u : : A | Γ ⊢ N : C [ u ♭ / x ] Ξ | Γ ⊢ β ♭ ( M , N ) : ( let u ♭ ≔ M in N ) = C [ M ♭ / x ] N [ M / u ] ♭ − comp \frac{\Xi \vert \Gamma, x:\flat A \vdash C \; \mathrm{type} \quad \Xi \vert () \vdash M:\flat A \quad \Xi, u::A \vert \Gamma \vdash N : C[u^\flat/x]}{\Xi \vert \Gamma \vdash \beta_{\flat}(M, N):(\mathrm{let}\; u^\flat \coloneqq M \;\mathrm{in}\; N) =_{C[M^\flat/x]} N[M/u]}\flat-\mathrm{comp}
Examples
A cohesive homotopy type theory is a spatial homotopy type theory which additionally has an axiom of cohesion and a shape modality . Examples of this include
See also
References
David Corfield , Modal Homotopy Type Theory , … [reference to be completed]
A formal presentation of spatial type theory is found in
Last revised on June 22, 2024 at 18:15:04.
See the history of this page for a list of all contributions to it.