Formalism
Definition
Spacetime configurations
Properties
Spacetimes
black hole spacetimes | vanishing angular momentum | positive angular momentum |
---|---|---|
vanishing charge | Schwarzschild spacetime | Kerr spacetime |
positive charge | Reissner-Nordstrom spacetime | Kerr-Newman spacetime |
Quantum theory
superalgebra and (synthetic ) supergeometry
Type II supergravity is a supergravity in dimension 10 which is the low-energy effective quantum field theory underlying type II string theory.
Original constructions (mostly of type IIA):
F. Giani, M. Pernici, supergravity in ten dimensions, Phys. Rev. D 30 (1984) 325 [doi:10.1103/PhysRevD.30.325]
M. Huq, M. A. Namazie, Kaluza-Klein supergravity in ten dimensions, Classical and Quantum Gravity 2 3 (1985) [doi:10.1088/0264-9381/2/3/007]
I. C. G. Campbell, Peter C. West , non-chiral supergravity and its spontaneous compactification, Nuclear Physics B 243 1 (1984) 112-124 [doi:10.1016/0550-3213(84)90388-2]
See also the general references at supergravity.
Construction of type IIA supergravity via KK-compactification from 11d supergravity:
M. Huq, M. A. Namazie, Kaluza-Klein Supergravity In Ten Dimensions, Class. Quantum Grav. 2 (1985) 293 (spire:196711)
Riccardo D'Auria, Pietro Fré, Pietro Grassi, Trigiante, Pure Spinor Superstrings on Generic type IIA Supergravity Backgrounds arXiv:0803.1703
Discussion of (Lagrangian densities for) D=10 type II supergravity with “duality-symmetric”/“democratic”/“pregeometric” for of the RR-fields:
Gianguido Dall'Agata, Kurt Lechner, Mario Tonin, , Supergravity: Lorentz-invariant actions and duality, JHEP 9807:017 (1998) arXiv:hep-th/9806140, doi:10.1088/1126-6708/1998/07/017
Eugene Cremmer, Bernard Julia, H. Lu, Christopher Pope, Section 3 of: Dualisation of Dualities, II: Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535(1998) 242-292 arXiv:hep-th/9806106, doi:10.1016/S0550-3213(98)00552-5
Eric Bergshoeff, Renata Kallosh, Tomas Ortin, Diederik Roest, Antoine Van Proeyen, New Formulations of D=10 Supersymmetry and D8-O8 Domain Walls, Class. Quant. Grav. 18 (2001) 3359-3382 arXiv:hep-th/0103233, doi:10.1088/0264-9381/18/17/303
Igor Bandos, Alexei Nurmagambetov, Dmitri Sorokin, Various Faces of Type IIA Supergravity, Nucl. Phys. B 676 (2004) 189-228 arXiv:hep-th/0307153, doi:10.1016/j.nuclphysb.2003.10.036
Karapet Mkrtchyan, Fridrich Valach, Democratic actions for type II supergravities, Phys. Rev. D 107 6 (2023) 066027 [doi:10.1103/PhysRevD.107.066027, arXiv:2207.00626]
Enhancement of the self-duality constraint on pregeometric RR-fields from (twisted) de Rham cohomology to (twisted) topological K-theory (under the hypothesized K-theory classification of D-brane charge) in terms of a quadratic form on differential K-theory:
Gregory Moore, Edward Witten, Self-Duality, Ramond-Ramond Fields, and K-Theory, JHEP 0005:032 (2000) arXiv:hep-th/9912279
Edward Witten, Duality Relations Among Topological Effects In String Theory, JHEP 0005:031 (2000) arXiv:hep-th/9912086, doi:10.1088/1126-6708/2000/05/032
Daniel Freed, Michael Hopkins, On Ramond-Ramond fields and K-theory, JHEP 0005 (2000) 044 arXiv:hep-th/0002027
Daniel Freed, Dirac charge quantization and generalized differential cohomology, Surveys in Differential Geometry 7, Int. Press (2000) 129-194 arXiv:hep-th/0011220, doi:10.4310/SDG.2002.v7.n1.a6, spire:537392
An indication of a more refined discussion in twisted differential KR-theory:
See at orientifold for more on this.
Expressing the self-duality of pregeometric RR-fields in terms of 11d Chern-Simons theory:
Some review:
Discussion in the context of flux quantization (here: D-brane charge quantization in K-theory):
Disucssion of black hole solutions (see also at black holes in string theory) includes
Discussion of black branes and BPS states for type II supergravity includes
Andrew Callister, Douglas Smith, Topological BPS charges in 10 and 11-dimensional supergravity, Phys. Rev. D78:065042,2008 (arXiv:0712.3235)
Andrew Callister, Douglas Smith, Topological charges in covariant massive 11-dimensional and Type IIB SUGRA, Phys.Rev.D80:125035,2009 (arXiv:0907.3614)
Andrew Callister, Topological BPS charges in 10- and 11-dimensional supergravity, thesis 2010 (spire)
A. A. Golubtsova, V.D. Ivashchuk, BPS branes in 10 and 11 dimensional supergravity, talk at DIAS 2013 (pdf slides)
Discussion of asymptotic de Sitter spacetimes from time-dependent KK-compactification of type II supergravity:
reviewed in:
A relation of the U-duality symmetry to generalized complex geometry is discussed in
André Coimbra, Charles Strickland-Constable, Daniel Waldram, Supergravity as Generalised Geometry I: Type II Theories (arXiv:1107.1733)
Paulo Pires Pacheco, Daniel Waldram, M-theory, exceptional generalised geometry and superpotentials (arXiv:0804.1362)
A thesis reviewing some aspects is
On higher curvature corrections:
Discusdion of type IIA and IIB supergravities via double field theory:
and, to the full order in fermions, in
Comprehensive discussion in higher differential geometry:
Luigi Alfonsi, Global Double Field Theory is Higher Kaluza-Klein Theory, Fortsch. d. Phys. 2020 (arXiv:1912.07089, doi:10.1002/prop.202000010)
Luigi Alfonsi, The puzzle of global Double Field Theory: open problems and the case for a Higher Kaluza-Klein perspective (arXiv:2007.04969)
(relating Kaluza-Klein compactification on principal ∞-bundles to double field theory, T-folds, non-abelian T-duality, type II geometry, exceptional geometry, …)
Last revised on December 21, 2023 at 17:53:41. See the history of this page for a list of all contributions to it.