nLab coadjoint orbit

Redirected from "coadjoint orbits".
Contents

Context

Group Theory

Representation theory

Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Definition

Given a Lie group GG, it acts smoothly on the dual g *g^* of its Lie algebra gg by the coadjoint action. The orbits of that action are called coadjoint orbits.

Coadjoint orbits are especially important in the orbit method of representation theory or, more generally, geometric quantization.

Sometimes coadjoint orbits are studied in the infinite-dimensional case (for example in study of Virasoro algebra).

Properties

As symplectic leaves of the Lie-Poisson structure

The dual g *g^* of a (say finite-dimensional real) Lie algebra has a structure of a Poisson manifold with the Poisson structure due to A. Kirillov and Souriau, called the Lie-Poisson structure, namely for any ag *a\in g^*,

{f,g}(a)[df a,dg a],a \{ f, g\}(a) \;\coloneqq\; \langle [d f_a, d g_a],a\rangle

The coadjoint orbits are the symplectic leaves of that structure; hence each orbit is a symplectic manifold.

Examples

References

In particle physics:

  • Ismaël Ahlouche Lahlali, Josh A. O’Connor: Coset symmetries and coadjoint orbits [arXiv:2411.05918]

Last revised on November 12, 2024 at 10:32:04. See the history of this page for a list of all contributions to it.