Formalism
Definition
Spacetime configurations
Properties
Spacetimes
black hole spacetimes | vanishing angular momentum | positive angular momentum |
---|---|---|
vanishing charge | Schwarzschild spacetime | Kerr spacetime |
positive charge | Reissner-Nordstrom spacetime | Kerr-Newman spacetime |
Quantum theory
physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
The theory of gravity in dimensions famously has black hole solutions, being the limiting configuration of a point mass gravitational source. In higher dimensional gravity, and in particular in higher dimensional supergravity, there are analogous solutions, which however are limiting configurations of a gravitational source that is supported on a line, or a surface, or a higher dimensional space. For a surface one might speak of black membrane solutions hence generally of black brane solutions.
Particularly the BPS states among the black branes in supergravity, i.e. those solutions that carry Killing spinors, include configurations that look like the strong-coupling version of the Green-Schwarz super p-branes.
1/2 BPS black branes in supergravity: D-branes, F1-brane, NS5-brane, M2-brane, M5-brane
(table from Blumenhagen, Lüst & Theisen 2013, Chapter 18.5)
The near-horizon geometry of these black branes is generically that of anti de Sitter spacetime times a sphere. To the extent that the worldvolume theory of the branes is a superconformal QFT, this is the origin of the AdS-CFT correspondence.
The types of black branes that can occur in theories of supergravity that are obtained from the maximal 11-dimensional supergravity match precisely the types of D-branes and NS-branes that appear in the corresponding perturbative superstring theories.
The idea is that both these brane-phenomena are aspects of one single entity:
At low string coupling the D-brane/NS-brane description is accurate. Low string coupling implies that the coupling of gravity is weak, hence that the back-reaction of the branes on the background geometry is negligible.
At large string coupling but low energy, the effective supergravity description becomes accurate. Here the branes do back-react on the gravitational background and hence create the black brane spacetime geometry.
This duality of the brane picture is at the heart of the AdS/CFT correspondence. See there for more details.
black membrane?
Table of branes appearing in supergravity/string theory (for classification see at brane scan).
By “black branes” one mostly refers to – generally higher-dimensional – singular solutions of theories of supergravity, referenced below at
But closely related discussion has historically been had on the possibility of identifying electrons and other fundamental particles with Kerr-Newman black holes (“black 0-branes”):
On the similarity between Kerr-Newman black holes (charged and spinning “black 0-branes”) and elementary particles (sigma-model 0-branes) like electrons.
Historical precursor discussion on the possibility of geometrodynamics for fundamental particles:
Seminal observation that the gyromagnetic ratio of the Kerr-Newman black hole is 2, just as the for electron (cf. at anomalous magnetic moment):
Brandon Carter, p. 1562 of: Global Structure of the Kerr Family of Gravitational Fields, Phys. Rev. 174 (1968) 1559 [doi:10.1103/PhysRev.174.1559]
Werner Israel, Source of the Kerr Metric, Phys. Rev. D 2 641 (1970) [doi:10.1103/PhysRevD.2.641]
Further discussion:
Carlos A. López, Extended model of the electron in general relativity, Phys. Rev. D 30 313 (1984) [doi:10.1103/PhysRevD.30.313]
H. I. Arcos, J. G. Pereira: Kerr–Newman Solution as a Dirac Particle, General Relativity and Gravitation 36 (2004) 2441–2464 [doi:10.1023/B:GERG.0000046832.71368.a5, arXiv:hep-th/0210103]
Alexander Burinskii, The Dirac-Kerr-Newman electron, Gravit. Cosmol. 14 (2008) 109–122 [doi:10.1134/S0202289308020011, arXiv:hep-th/0507109]
Alexander Burinskii, Kerr–Newman electron as spinning soliton, International Journal of Modern Physics A 29 26, 1450133 (2014) [doi:10.1142/S0217751X14501334, arXiv:1410.2888]
See also:
Original articles on black branes in supergravity (and thereby in string/M-theory):
Michael Duff, Ramzi R. Khuri, Jian Xin Lu, String and Fivebrane Solitons: Singular or Non-singular?, Nucl.Phys. B 377 (1992) 281-294 [arXiv:hep-th/9112023, doi:10.1016/0550-3213(92)90025-7]
Michael Duff, Jian Xin Lu, Black and super -branes in diverse dimensions, Nucl. Phys. B 416 (1994) 301-334 [arXiv:hep-th/9306052, doi:10.1016/0550-3213(94)90586-X]
Mike Duff, Ramzi R. Khuri, Jian Xin Lu, String Solitons, Phys. Rept. 259 (1995) 213-326 [arXiv:hep-th/9412184, doi:10.1016/0370-1573(95)00002-X]
Michael Duff, H. Lu, Christopher Pope, The Black Branes of M-theory, Phys. Lett. B 382 (1996) [arXiv:hep-th/9604052]
The M5-brane was maybe first found as a black brane of 11-dimensional supergravity (the black fivebrane) in
The observation that black -branes metric for odd are completely non-singular is due to
The suggestion that extremal/BPS state black branes are the strong coupling incarnation of fundamental branes originates in
Chris Hull, Paul Townsend, Unity of Superstring Dualities, Nucl. Phys. B 438 (1995) 109-137 [arXiv:hep-th/9410167]
Edward Witten, p. 6 (bottom) of: String Theory Dynamics In Various Dimensions, Nucl. Phys. B 443 (1995) 85-126 [arXiv:hep-th/9503124]
Review:
Mike Duff, chapter 5 of: The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, IoP (1999) [ISBN:9780750306720]
Kellogg Stelle, around section 3.3 of: BPS Branes in Supergravity, in: Quantum Field Theory: Perspective and Prospective, NATO Science Series 530 (1999) 257-351 [arXiv:hep-th/9803116, doi:10.1007/978-94-011-4542-8_12]
Ofer Aharony, S. S. Gubser, Juan Maldacena, H. Ooguri, Y. Oz, section 1.3 of Large N Field Theories, String Theory and Gravity [arXiv:hep-th/9905111]
Thomas Mohaupt, Black holes in supergravity and string theory, Class. Quantum Grav. 17 (2000) 3429–3482 (pdf)
Ralph Blumenhagen, Dieter Lüst, Stefan Theisen, Brane solutions in supergravity, chapter 18.5 in: Basic Concepts of String Theory, Springer (2013) [doi:10.1007/978-3-642-29497-6]
and in the context of multiple M2-branes in the BLG model:
Further developments include
Gerard Clement, Dmitri Gal’tsov, Cedric Leygnac, Black branes on the linear dilaton background, Phys. Rev. D71 (2005) 084014 (arXiv:hep-th/0412321)
D. Gal’tsov, S. Klevtsov, D. Orlov, G. Clement, More on general -brane solutions, Int.J.Mod.Phys.A21:3575-3604, 2006 (arXiv:hep-th/0508070)
Michael Duff, Near-horizon brane scan revived, Nucl. Phys. B810:193-209, 2009 (arXiv:0804.3675)
Jay Armas, Joan Camps, Troels Harmark, Niels A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds (arXiv:1110.4835)
Roberto Emparan, Troels Harmark, Vasilis Niarchos, Niels A. Obers, Essentials of Blackfold Dynamics, JHEP 1003 063 (2010) [arXiv:0910.1601, doi:10.1007/JHEP03(2010)063]
Roberto Emparan, Troels Harmark, Vasilis Niarchos, Niels A. Obers, Blackfolds in Supergravity and String Theory, JHEP 1108 (2011) 154 [arXiv:1106.4428doi:10.1007/JHEP08(2011)154]
Over a decade before the modern formulation of the AdS-CFT correspondence, a candicate “microscopic” explanation was observed:
Immersing the worldvolume of a sigma-model super -brane (hence a “light” brane without backreaction) along the near horizon geometry (an AdS supergravity solution) of its own black brane incarnation (hence the “heavy” incarnation of the same brane, causing backreaction), its worldvolume fluctuations (after super-diffeomorphism gauge fixing) are described by the corresponding superconformal field theory (exhibited by superconformal multiplets such as “supersingletons”) [graphics from GSS24].
The original observation for the M2-brane:
Eric Bergshoeff, Michael Duff, Christopher Pope, Ergin Sezgin: Supersymmetric Supermembrane Vacua and Singletons, Phys. Lett. B 199 (1987) 69-74 [doi:10.1016/0370-2693(87)91465-1, InSpire:250244]
Miles P. Blencowe, Mike Duff, Supersingletons, Physics letters B, 203 3 (1988) 229-236 [doi:10.1016/0370-2693(88)90544-8, cds:184143]
Gianguido Dall'Agata, Davide Fabbri, Christophe Fraser, Pietro Fré, Piet Termonia, Mario Trigiante, The singleton action from the supermembrane, Nucl. Phys. B 542 (1999) 157-194 [doi:10.1016/S0550-3213(98)00765-2, arXiv:hep-th/9807115]
with popular exposition in:
Further discussion including also M5-branes and D-branes:
Piet Claus, Renata Kallosh, Antoine Van Proeyen, M 5-brane and superconformal tensor multiplet in 6 dimensions, Nucl. Phys. B 518 (1998) 117-150 [doi:10.1016/S0550-3213(98)00137-0, arXiv:hep-th/9711161]
Piet Claus, Renata Kallosh, J. Kumar, Paul K. Townsend, Antoine Van Proeyen, Conformal Theory of M2, D3, M5 and “D1+D5” Branes, JHEP 9806 (1998) 004 [doi:10.1088/1126-6708/1998/06/004, arXiv:hep-th/9801206]
Paolo Pasti, Dmitri Sorokin, Mario Tonin, Branes in Super-AdS Backgrounds and Superconformal Theories, Proceedings, International Workshop on Supersymmetries and Quantum Symmetries (SQS’99), Moscow (July 27-31, 1999) [arXiv:hep-th/9912076, inspire:511348]
C. Grojean, J. Mourad, Super fivebranes near the boundary of , Nuclear Physics B 567 1–2 (2000) 133-150 [doi:10.1016/S0550-3213(99)00335-1, arXiv:hep-th/9903164]
Alexei Nurmagambetov, I. Y. Park On the M5 and the correspondence, Physics Letters B
524 1–2 (2002) 185-191 [doi:10.1016/S0370-2693(01)01375-2, arXiv:hep-th/0110192]
Review:
Mike Duff, Anti-de Sitter space, branes, singletons, superconformal field theories and all that, Int. J. Mod. Phys. A 14 (1999) 815-844 [doi:10.1142/S0217751X99000403, arXiv:hep-th/9808100]
Mike Duff, TASI Lectures on Branes, Black Holes and Anti-de Sitter Space, lectures at 9th CRM Summer School: Theoretical Physics at the End of the 20th Century at TASI 99 (1999) [arXiv:hep-th/9912164, inspire:511822]
The resulting super-conformal brane scan:
Michael Duff, Near-horizon brane-scan revived, Nucl. Phys. B 810 (2009) 193-209 [doi:10.1016/j.nuclphysb.2008.11.001, arXiv:0804.3675]
Michael Duff, The conformal brane-scan: an update, J. High Energ. Phys. 2022 54 (2022) [doi:10.1007/JHEP06(2022)054, arXiv:2112.13784]
Related:
Analogous discussion for embeddings with less supersymmetry, corresponding to defects
Nadav Drukker, Simone Giombi, Arkady A. Tseytlin, Xinan Zhou, Defect CFT in the 6d theory from M2 brane dynamics in , J. High Energ. Phys. 2020 101 (2020) [doi:10.1007/JHEP07(2020)101, arXiv:2004.04562]
Varun Gupta, Holographic M5 branes in , J. High Energ. Phys. 2021 32 (2021) [doi:10.1007/JHEP12(2021)032, arXiv:2109.08551]
Varun Gupta, More Holographic M5 branes in , Phys. Lett. B 853 (2024) 138650 [doi:10.1016/j.physletb.2024.138650, arXiv:2301.02528]
Last revised on July 1, 2024 at 13:53:08. See the history of this page for a list of all contributions to it.