M-theory supersymmetry algebra


\infty-Lie theory

∞-Lie theory (higher geometry)


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids




\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras


String theory



A super Lie algebra which is a polyvector extension of the super Poincaré Lie algebra (supersymmetry) in D=10+1D = 10+1 for N=1N=1 supersymmetry by charges corresponding to the M2-brane and the M5-brane (“extended supersymmetry”).


As the algebra of conserved currents of the M-branes

In (AGIT 89) it is shows that the M-algebra-like polyvector extensions arise as the algebras of conserved currents of the Green-Schwarz super p-brane sigma-models.

By the discussion at conserved current – In higher prequantum geometry this means that this is the degree-0 piece in the Heisenberg Lie n-algebra which is induced by regarding the WZW-curvature terms as super n-plectic forms on 10,1|32\mathbb{R}^{10,1|32}.

As the Lie algebra of derivation of the SuGra Lie 3-algebra

In (Castellani 05) it is implicitly shown, (FSS 13), that the M-extension arises as the derivations/automorphisms of the supergravity Lie 3-algebra/supergravity Lie 6-algebra (see there for the details).

As an 11-dimensional boundary condition for the M2-brane

The original construction in (D’Auria-Fre 82) asks for a super Lie algebra extension 10,1|32𝔤\mathbb{R}^{10,1\vert 32} \rtimes \mathfrak{g} of super Minkowski spacetime 10,1|32\mathbb{R}^{10,1\vert 32} such that the 4-cocycle μ 4=ψ¯Γ abψe ae b\mu_4 = \overline{\psi} \wedge \Gamma^{a b} \psi \wedge e_a \wedge e_b for the M2-brane trivializes when pulled back to this:

10,1|32𝔤 * 10,1|32 μ 4 B 3. \array{ & & \mathbb{R}^{10,1\vert 32} \rtimes \mathfrak{g} \\ & \swarrow && \searrow \\ \ast && \swArrow_{\simeq} && \mathbb{R}^{10,1\vert 32} \\ & \searrow && \swarrow_{\mathrlap{\mu_4}} \\ && B^{3}\mathbb{R} } \,.

(In the language of local prequantum field theory this identifies a boundary condition for the WZW term of the M2-brane.)

They find, see also (Bandos-Azcarraga-Izquierdo-PiconVarela 04) that a solution for 𝔤\mathfrak{g} includes a fermionic extension of the M-theory super Lie algebra.


The Polyvector extensions of ℑ𝔰𝔬( 10,1|32)\mathfrak{Iso}(\mathbb{R}^{10,1|32}) were first considered in

with more comprehensive analysis in

where (a further fermionic extension of it) is derived as a super Lie algebra extension of 11d super Minkowski spacetime on which the M2-brane 4-cocycle trivializes.

See also

That a limiting case of this is given by the orthosymplectic super Lie algebra 𝔬𝔰𝔭(1|32)\mathfrak{osp}(1\vert 32) is due to

  • J.J. Fernandez, J.M. Izquierdo, M.A. del Olmo, Contractions from osp(1|32)osp(1|32)osp(1|32) \oplus osp(1|32) to the M-theory superalgebra extended by additional fermionic generators,Nuclear Physics B Volume 897, August 2015, Pages 87–97 (arXiv:1504.05946)

That the underlying bosonic body of this super Lie algebra happens to be the typical fiber of what would be the 11-d exceptional generalized tangent bundle, namely the level-2 truncation of the l1-representation of E11 according to (West 04) was highlighted in the review

From a different perspective the M-theory algebra extensions were (apparently independently) introduced in

with further amplification including

In their global form, where differential forms are replaced by their de Rham cohomology classes on curved superspacetimes, these algebras were identified (for the case including the 2-form piece but not the 5-form piece) as the algebras of conserved currents of the Green-Schwarz super p-brane sigma-models in

reviewed in

The generalization of this including also the contribution of the M5-brane was considered in

Further detailed discussion along these lines producing also the type II supersymmetry algebras is in

  • Hanno Hammer, Topological Extensions of Noether Charge Algebras carried by D-p-branes, Nucl.Phys. B521 (1998) 503-546 (arXiv:hep-th/9711009)

The full extension was named “M-algebra” in

In (D’Auria-Fré 82) the motivation is from the formulation of the fields of 11-dimensional supergravity as connections with values in the supergravity Lie 3-algebra, see at D'Auria-Fré formulation of supergravity. Realization of the M-theory super Lie algebra as the algebra of derivations of the supergravity Lie 3-algebra is in

with amplification in

Discussion of a formulation in terms of octonions (see also at division algebra and supersymmetry) includes

Arguments that the charges of the M-theory super Lie algebra may be identified inside E11 are given in

Revised on September 14, 2017 09:39:42 by David Corfield (