quantum algorithms:
By “-models” one refers to (topological) sigma-models — often (topological) string theories if the worldvolume is 2-dimensional — with target space a complex projective space such as the Riemann sphere .
NFJKK22: “The models in 1+1 dimensions share many properties with QCD in 3+1 dimensions, among them confinement, asymptotic freedom, instantons, a expansion, a topological charge, and a θ-term. Thus, they serve as benchmark models for developing and testing both new numerical techniques and new proposed solutions to open questions of QCD. Both the models and QCD contain many nonperturbative phenomena, which cannot be addressed with conventional lattice techniques.”
The general notion of sigma models with target space a sphere or a complex projective space :
Golo, Perelomov, Solution of the duality equations for the two-dimensional -invariant chiral model, Physics Letters B 79 1–2 (1978) 112-113 [doi:10.1016/0370-2693(78)90447-1]
Harald Eichenherr, invariant non-linear σ models, Nuclear Physics B 146 1 (1978) 215-223 [doi:10.1016/0550-3213(78)90439-X, errata:doi:10.1016/0550-3213(79)90287-6]
Harald Eichenherr, Michael Forger, Higher local conservation laws for nonlinear sigma models on symmetric spaces, Commun. Math. Phys. 82 (1981) 227–255 [doi:10.1007/BF02099918]
Edward Witten, §3 of: Instatons, the quark model, and the expansion, Nuclear Physics B 149 2 (1979) 285-320 [doi:10.1016/0550-3213(79)90243-8
The lattice field theory-formulation:
and its supersymmetric version:
On the quantum cohomology inducd by the -model:
Sergio Cecotti, Cumrun Vafa, Exact Results for Supersymmetric Sigma Models, Phys. Rev. Lett. 68 (1992) 903-906 [arXiv:hep-th/9111016, doi:10.1103/PhysRevLett.68.903]
Sergio Cecotti, Cumrun Vafa, On Classification of Supersymmetric Theories, Comm. Math. Phys. 158 (1993) 569-644 [arXiv:hep-th/9211097, doi:10.1007/BF02096804]
M. F. Bourdeau, Michael R. Douglas, Topological-Antitopological Fusion and the Large Model, Nucl. Phys. B 420 (1994) 243-267 [doi:hep-th/9312095, doi:10.1016/0550-3213(94)90380-8]
On the Nicolai map for the sigma-model:
See also:
Edward Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Physics B
340 2–3 (1990) 281-332 [doi:10.1016/0550-3213(90)90449-N]
Tohru Eguchi, Sung-Kil Yang, The Topological Model and the Large- Matrix Integral, Mod. Phys. Lett. A 9 (1994) 2893-2902 [arXiv:hep-th/9407134, doi:10.1142/S0217732394002732]
Shmuel Elitzur, A. Forge, Eliezer Rabinovici, On effective theories of topological strings, Nuclear Physics B 388 1 (1992) 131-155 [doi:10.1016/0550-3213(92)90548-P]
Shmuel Elitzur, Yaron Oz, Eliezer Rabinovici, Johannes Walcher, Open/Closed Topological Sigma Model Revisited, J. High Energ. Phys. 2012 101 (2012) [arXiv:1106.2967]
Rajesh Gopakumar, What is the Simplest Gauge-String Duality? [arXiv:1104.2386]
Rajesh Gopakumar, Roji Pius, Correlators in the Simplest Gauge-String Duality [arXiv:1212.1236]
Lwazi Nkumane, The Simplest Gauge-String Duality (2015) [pdf]
R. Banerjee, Quantum equivalence of nonlinear σ model and the model: A gauge-independent Hamiltonian approach, Phys. Rev. D 49 2133 (1994) [doi:10.1103/PhysRevD.49.2133]
Katsumasa Nakayama, Lena Funcke, Karl Jansen, Ying-Jer Kao, Stefan Kühn, Phase structure of the model in the presence of a topological -term, Phys. Rev. D 105 054507 (2022) [arXiv:2107.14220, doi:10.1103/PhysRevD.105.054507]
More generally, on sigma models with flag manifold target spaces and relation to Gross-Neveu models:
Dmitri Bykov, Quantum flag manifold σ-models and Hermitian Ricci flow, Commun. Math. Phys. 401 1-32 (2023) [arXiv:2006.14124, doi:10.1007/s00220-022-04532-5]
Ian Affleck, Dmitri Bykov, Kyle Wamer, Flag manifold sigma models: spin chains and integrable theories, Phys. Rept. 953 (2022) 1-93 [arXiv:2101.11638, doi:10.1016/j.physrep.2021.09.004]
See also:
On the relation between quantum cohomology rings, hence of Gromov-Witten invariants in topological string theory, for flag manifold target spaces (such as the -sigma model) and Pontrjagin rings (homology-Hopf algebras of based loop spaces):
That the Pontryagin ring-structure on the ordinary homology of the based loop space of a simply-connected compact Lie group is essentially the quantum cohomology ring of the flag variety of its complexification by its Borel subgroup is attributed (“Peterson isomorphism”) to
see also
and proven in
Thomas Lam, Mark Shimozono, §6.2 in: Quantum cohomology of and homology of affine Grassmannian, Acta Mathematica 204 (2010) 49–90 arXiv:0705.1386, doi:10.1007/s11511-010-0045-8
Chi Hong Chow, Peterson-Lam-Shimozono’s theorem is an affine analogue of quantum Chevalley formula arXiv:2110.09985
Chi Hong Chow, On D. Peterson’s presentation of quantum cohomology of arXiv:2210.17382
reviewed in
with further discussion in:
On the variant for Pontryagin products not on ordinary homology but in topological K-homology:
Thomas Lam, Changzheng Li, Leonardo C. Mihalcea, Mark Shimozono, A conjectural Peterson isomorphism in K-theory, Journal of Algebra 513 (2018) 326-343 doi:10.1016/j.jalgebra.2018.07.029, arXiv:1705.03435
Takeshi Ikeda, Shinsuke Iwao, Toshiaki Maeno, Peterson Isomorphism in K-theory and Relativistic Toda Lattice, International Mathematics Research Notices 2020 19 (2020) 6421–6462 arXiv:1703.08664, doi:10.1093/imrn/rny051
Syu Kato, Loop structure on equivariant K-theory of semi-infinite flag manifolds arXiv:1805.01718
Syu Kato, On quantum -groups of partial flag manifolds arXiv:1906.09343
Syu Kato, Darboux coordinates on the BFM spaces arXiv:2008.01310
Syu Kato, Quantum -groups on flag manifolds, talk at IMPANGA 20 (2021) pdf
On the example of the CP^1 sigma-model: LLMS18, §4.1, Kato21 p. 17, Chow22 Exp. 1.4.
See also:
Relation to chiral rings of D=3 N=4 super Yang-Mills theory:
Last revised on June 1, 2024 at 12:22:28. See the history of this page for a list of all contributions to it.