physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
Holographic entanglement entropy refers to the expression of entanglement entropy of quantum field theories expressed “holographically” via a version of AdS-CFT duality in terms of the geometry of a higher-dimensional bulk spacetime
For quantum field theories that are exhibited as boundary field theories on the asymptotic boundary of an approximately anti de Sitter spacetime via some approximation to AdS-CFT duality (for instance for QCD via AdS-QCD duality) their entanglement entropy of a given bounded domain turns out to be proportional to the area of the minimal-area surface inside the bulk spacetime that has the same boundary (see Nishioka-Ryu-Takayanagi 09 (3.3) for review of the formula and Lewkowycz-Maldacena 13 for a conceptual explanation).
graphics grabbed from Nishioka-Ryu-Takayanagi 09
This relation is known as the Ryu-Takayanagi formula (Ryu-Takayanagi 06a, Ryu-Takayanagi 06b) for holographic computation of entanglement entropy, or holographic entanglement entropy, for short.
This is a generalization of the proportionality of black hole entropy to the area of its event horizon. Indeed, AdS-CFT duality applies to the near horizon geometry of black branes, the higher-dimensional generalizations of black holes and reduces 4d black holes under suitable KK-compactification (see also at black holes in string theory)
graphics grabbed from Nishioka-Ryu-Takayanagi 09
In fact quantum corrections to the black hole entropy in the presence of matter fields is equal to the entanglement entropy. (Ryu-Takayanagi 06a, p. 13)
Various properties of entanglement entropy find immediate geometric interpretations this way, for instance subadditivity
graphics grabbed from Nishioka-Ryu-Takayanagi 09
Further discussion of implications of the Ryu-Takayanagi formula in van Raamsdonk 10 suggested that the logic may also be turned around: Instead of computing entanglement entropy of a given boundary field theory from known bulk geometry, conversely the bulk spacetime may be reconstructed from knowledge of the entanglement entropy of a boundary field theory.
Talking this perspective to the extreme suggests a description of bulk spacetimes entirely in terms of information theory/entanglement-relations of a boundary QFT (“tensor networks”, Swingle 09, Swingle 12, and quantum error correction codes ADH 14, PYHP 15, see Harlow 18 for review).
graphics grabbed from Harlow 18
graphics grabbed from Harlow 18
In this context the Ryu-Takayanagi formula for holographic entanglement entropy (above) has an exact proof PYHP 15, Theorem 2.
gravitational entropy
The original articles are
Shinsei Ryu, Tadashi Takayanagi, Holographic Derivation of Entanglement Entropy from AdS/CFT, Phys. Rev. Lett. 96:181602, 2006 (arXiv:hep-th/0603001)
Shinsei Ryu, Tadashi Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 0608:045, 2006 (arXiv:hep-th/0605073)
A proposal for a conceptual explanation is made in
Review:
Jens Eisert, M. Cramer, M.B. Plenio, Area laws for the entanglement entropy - a review, Rev. Mod. Phys. 82, 277 (2010) (arXiv:0808.3773)
Tatsuma Nishioka, Shinsei Ryu, Tadashi Takayanagi, Holographic Entanglement Entropy: An Overview, J.Phys.A42:504008,2009 (arXiv:0905.0932)
Matthew Headrick, Lectures on entanglement entropy in field theory and holography (arXiv:1907.08126)
Survey talks include
Robert Myers, Holographic entanglement entropy, (pdf slides)
Shinsei Ryu, Holographic geometry in Entanglement Renormalization (pdf slides)
Juan Jottar, (Entanglement) Entropy in three-dimensional higher spin theories (pdf slides)
Matthew Headrick, Entanglement entropies in holographic field theory (pdf slides)
Tadashi Takayanagi, Entanglement Entropy and Holography (Introductory review) (pdf slides)
Tom Hartmann, Entanglement entropy and geometry, talk slides, 2014 (pdf)
An influential argument that this relation implies that entanglement in the boundary theory is what makes spacetime as such appear in the bulk theory is due to
Mark Van Raamsdonk, Building up spacetime with quantum entanglement, Gen.Rel.Grav.42:2323-2329,2010; Int.J.Mod.Phys.D19:2429-2435,2010 (arXiv:1005.3035)
Mark Van Raamsdonk, Building up spacetime with quantum entanglement II: It from BC-bit (arXiv:1809.01197)
reviewed in
TASI 2015 Proceedings of the 2015 Theoretical Advanced Study Institute in Elementary Particle Physics 2015 Theoretical Advanced Study Institute in Elementary Particle Physics (arXiv:1609.00026)
Discussion of the corresponding continuum theory, formulated via local nets of observables in algebraic quantum field theory:
Edward Witten, Notes on Some Entanglement Properties of Quantum Field Theory, Rev. Mod. Phys. 90, 45003 (2018) (arXiv:1803.04993)
Thomas Faulkner, The holographic map as a conditional expectation (arXiv:2008.04810)
Relation to renormalization of entanglement and tensor networks is due to
Brian Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86, 065007 (2012) (arXiv:0905.1317)
Brian Swingle, Constructing holographic spacetimes using entanglement renormalization (arXiv:1209.3304, spire:1185813)
and further in terms of quantum error correcting codes due to
Ahmed Almheiri, Xi Dong, Daniel Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 1504:163,2015 (arXiv:1411.7041)
Fernando Pastawski, Beni Yoshida, Daniel Harlow, John Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 (arXiv:1503.06237)
Helia Kamal, Geoffrey Penington, The Ryu-Takayanagi Formula from Quantum Error Correction: An Algebraic Treatment of the Boundary CFT (arXiv:1912.02240)
reviewed in
also
Alexander Jahn, Marek Gluza, Fernando Pastawski, Jens Eisert, Majorana dimers and holographic quantum error-correcting codes, Phys. Rev. Research 1, 033079 (2019) (arXiv:1905.03268)
Ahmed Almheiri, Holographic Quantum Error Correction and the Projected Black Hole Interior (arXiv:1810.02055)
Alexander Jahn, Jens Eisert, Holographic tensor network models and quantum error correction: A topical review (arXiv:2102.02619)
See also
Felix M. Haehl, Eric Mintun, Jason Pollack, Antony J. Speranza, Mark Van Raamsdonk, Nonlocal multi-trace sources and bulk entanglement in holographic conformal field theories, J. High Energ. Phys. (2019) 2019: 005 (arxiv:1904.01584, talk recording)
Han Yan, Hyperbolic Fracton Model, Subsystem Symmetry, and Holography, Phys. Rev. B 99, 155126 (2019) (arxiv:1807.05942)
Further development of these tensor networks in
Ning Bao, Geoffrey Penington, Jonathan Sorce, Aron C. Wall, Beyond Toy Models: Distilling Tensor Networks in Full AdS/CFT (arXiv:1812.01171)
Ning Bao, Geoffrey Penington, Jonathan Sorce, Aron C. Wall, Holographic Tensor Networks in Full AdS/CFT (arXiv:1902.10157)
Computation of black hole entropy in 4d via AdS4-CFT3 duality from holographic entanglement entropy in the ABJM theory for the M2-brane is discussed in
Discussion in terms of DHR superselection theory:
Discussion of BTZ black hole entropy and more generally of holographic entanglement entropy in 3d quantum gravity/AdS3/CFT2 via Wilson line observables in Chern-Simons theory:
Martin Ammon, Alejandra Castro, Nabil Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 (arXiv:1306.4338)
Jan de Boer, Juan I. Jottar, Entanglement Entropy and Higher Spin Holography in , JHEP 1404:089, 2014 (arXiv:1306.4347)
Alejandra Castro, Stephane Detournay, Nabil Iqbal, Eric Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 (arXiv:1405.2792)
Mert Besken, Ashwin Hegde, Eliot Hijano, Per Kraus, Holographic conformal blocks from interacting Wilson lines, JHEP 08 (2016) 099 (arXiv:1603.07317)
Andreas Blommaert, Thomas G. Mertens, Henri Verschelde, The Schwarzian Theory - A Wilson Line Perspective, JHEP 1812 (2018) 022 (arXiv:1806.07765)
Ashwin Dushyantha Hegde, Role of Wilson Lines in 3D Quantum Gravity, 2019 (spire:1763572)
Xing Huang, Chen-Te Ma, Hongfei Shu, Quantum Correction of the Wilson Line and Entanglement Entropy in the Chern-Simons Gravity Theory (arXiv:1911.03841)
Eric D'Hoker, Per Kraus, Gravitational Wilson lines in (arXiv:1912.02750)
Marc Henneaux, Wout Merbis, Arash Ranjbar, Asymptotic dynamics of gravity with two asymptotic regions (arXiv:1912.09465)
and similarly for 3d flat-space holography:
Arjun Bagchi, Rudranil Basu, Daniel Grumiller, Max Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114, 111602 (2015) (arXiv 1410.4089)
Rudranil Basu, Max Riegler, Wilson Lines and Holographic Entanglement Entropy in Galilean Conformal Field Theories, Phys. Rev. D 93, 045003 (2016) (arXiv:1511.08662)
Wout Merbis, Max Riegler, Geometric actions and flat space holography (arXiv:1912.08207)
Discussion for 3d de Sitter spacetime:
Application to AdS/QCD:
Claim that the proper application of holographic entanglement entropy to the discussion of Bekenstein-Hawking entropy resolves the apparent black hole information paradox:
Geoff Penington, Stephen Shenker, Douglas Stanford, Zhenbin Yang, Replica wormholes and the black hole interior (arXiv:1911.11977)
Ahmed Almheiri, Thomas Hartman, Juan Maldacena, Edgar Shaghoulian, Amirhossein Tajdini, Replica Wormholes and the Entropy of Hawking Radiation (arXiv:1911.12333)
Nicely reviewed in (aimed at readers with minimal background in this problem):
Last revised on February 20, 2021 at 10:22:04. See the history of this page for a list of all contributions to it.